53 research outputs found

    Promoting Microbiology Education Through the iGEM Synthetic Biology Competition

    Get PDF
    Synthetic biology has developed rapidly in the 21st century. It covers a range of scientific disciplines that incorporate principles from engineering to take advantage of and improve biological systems, often applied to specific problems. Methods important in this subject area include the systematic design and testing of biological systems and, here, we describe how synthetic biology projects frequently develop microbiology skills and education. Synthetic biology research has huge potential in biotechnology and medicine, which brings important ethical and moral issues to address, offering learning opportunities about the wider impact of microbiological research. Synthetic biology projects have developed into wide-ranging training and educational experiences through iGEM, the International Genetically Engineered Machines competition. Elements of the competition are judged against specific criteria and teams can win medals and prizes across several categories. Collaboration is an important element of iGEM and all DNA constructs synthesised by iGEM teams are made available to all researchers through the Registry for Standard Biological Parts. An overview of microbiological developments in the iGEM competition is provided. This review is targeted at educators that focus on microbiology and synthetic biology, but will also be of value to undergraduate and postgraduate students with an interest in this exciting subject area

    Microbiology survey shows authors have most to gain from peer review

    Get PDF
    In the week that an international team of publishers, science communicators and other scholarly organisations launch the second international Peer Review Week, the preliminary findings from our new survey reveal that authors gain more from peer review than the people who do the actual review

    From Beads on a String to the Pearls of Regulation: the Structure and Dynamics of Chromatin

    Get PDF
    The assembly of eukaryotic chromatin, and the bearing of its structural organization on the regulation of gene expression, were the central topics of a recent conference organized jointly by the Biochemical Society and Wellcome Trust. A range of talks and poster presentations covered topical aspects of this research field and illuminated recent advances in our understanding of the structure and function of chromatin. The two-day meeting had stimulating presentations complemented with lively discourse and interactions of participants. In the present paper, we summarize the topics presented at the meeting, in particular highlighting subjects that are reviewed in more detail within this issue of Biochemical Society Transactions. The reports bring to life the truly fascinating molecular and structural biology of chromatin

    Characterization of a temperature-sensitive DNA ligase from Escherichia coli

    Get PDF
    DNA ligases are essential enzymes in cells due to their ability to join DNA strand breaks formed during DNA replication. Several temperature-sensitive mutant strains of Escherichia coli, including strain GR501, have been described which can be complemented by functional DNA ligases. Here, it is shown that the ligA251 mutation in E. coli GR501 strain is a cytosine to thymine transition at base 43, which results in a substitution of leucine by phenylalanine at residue 15. The protein product of this gene (LigA251) is accumulated to a similar level at permissive and non-permissive temperatures. Compared to wild-type LigA, at 20 °C purified LigA251 has 20-fold lower ligation activity in vitro, and its activity is reduced further at 42 °C, resulting in 60-fold lower ligation activity than wild-type LigA. It is proposed that the mutation in LigA251 affects the structure of the N-terminal region of LigA. The resulting decrease in DNA ligase activity at the non-permissive temperature is likely to occur as the result of a conformational change that reduces the rate of adenylation of the ligase

    DNA structure

    Get PDF
    Deoxyribonucleic acid (DNA) is a polymer of nucleotides. In the cell, DNA usually adopts a double-stranded helical form, with complementary base-pairing holding the two strands together. The most stable conformation is called B-form DNA, although other structures can occur under specific conditions

    Evaluation of NAD(+)-dependent DNA ligase of mycobacteria as a potential target for antibiotics

    Get PDF
    Mycobacteria contain genes for several DNA ligases, including ligA, which encodes a NAD+-dependent enzyme that has been postulated to be a target for novel antibacterial compounds. Using a homologous recombination system, direct evidence is presented that wild-type ligA cannot be deleted from the chromosome of Mycobacterium smegmatis. Deletions of native ligA in M. smegmatis could be obtained only after the integration of an extra copy of M. smegmatis or Mycobacterium tuberculosis ligA into the attB site of the chromosome, with expression controlled by chemically inducible promoters. The four ATP-dependent DNA ligases encoded by the M. smegmatis chromosome were unable to replace the function of LigA. Interestingly, the LigA protein from M. smegmatis could be substituted with the NAD+-dependent DNA ligase of Escherichia coli or the ATP-dependent ligase of bacteriophage T4. The conditional mutant strains allowed the analysis of the effect of LigA depletion on the growth of M. smegmatis. The protein level of the conditional mutants was estimated by Western blot analysis using antibodies raised against LigA of M. tuberculosis. This revealed that a strong overproduction or depletion of LigA did not affect the growth or survival of mycobacteria under standard laboratory conditions. In conclusion, although NAD+-dependent DNA ligase is essential for mycobacterial viability, only low levels of protein are required for growth. These findings suggest that very efficient inhibition of enzyme activity would be required if NAD+-dependent DNA ligase is to be useful as an antibiotic target in mycobacteria. The strains developed here will provide useful tools for the evaluation of the efficacy of any appropriate compounds in mycobacteria

    Machines on Genes: Enzymes that Make, Break and Move DNA and RNA

    Get PDF
    As the vital information repositories of the cell, the nucleic acids DNA and RNA pose many challenges as enzyme substrates. To produce, maintain and repair DNA and RNA, and to extract the genetic information that they encode, a battery of remarkable enzymes has evolved, which includes translocases, polymerases/replicases, helicases, nucleases, topoisomerases, transposases, recombinases, repair enzymes and ribosomes. An understanding of how these enzymes function is essential if we are to have a clear view of the molecular biology of the cell and aspire to manipulate genomes and gene expression to our advantage. To bring together scientists working in this fast-developing field, the Biochemical Society held a Focused Meeting, ‘Machines on Genes: Enzymes that Make, Break and Move DNA and RNA’, at Robinson College, University of Cambridge, U.K., in August 2009. The present article summarizes the research presented at this meeting and the reviews associated with the talks which are published in this issue of Biochemical Society Transactions

    Structures and stability of simple DNA repeats from bacteria

    Get PDF
    DNA is a fundamentally important molecule for all cellular organisms due to its biological role as the store of hereditary, genetic information. On the one hand, genomic DNA is very stable, both in chemical and biological contexts, and this assists its genetic functions. On the other hand, it is also a dynamic molecule, and constant changes in its structure and sequence drive many biological processes, including adaptation and evolution of organisms. DNA genomes contain significant amounts of repetitive sequences, which have divergent functions in the complex processes that involve DNA, including replication, recombination, repair, and transcription. Through their involvement in these processes, repetitive DNA sequences influence the genetic instability and evolution of DNA molecules and they are located non-randomly in all genomes. Mechanisms that influence such genetic instability have been studied in many organisms, including within human genomes where they are linked to various human diseases. Here, we review our understanding of short, simple DNA repeats across a diverse range of bacteria, comparing the prevalence of repetitive DNA sequences in different genomes. We describe the range of DNA structures that have been observed in such repeats, focusing on their propensity to form local, non-B-DNA structures. Finally, we discuss the biological significance of such unusual DNA structures and relate this to studies where the impacts of DNA metabolism on genetic stability are linked to human diseases. Overall, we show that simple DNA repeats in bacteria serve as excellent and tractable experimental models for biochemical studies of their cellular functions and influences

    Interaction of proteins with inverted repeats and cruciform structures in nucleic acids

    Get PDF
    Cruciforms occur when inverted repeat sequences in double-stranded DNA adopt intra-strand hairpins on opposing strands. Biophysical and molecular studies of these structures confirm their characterization as four-way junctions and have demonstrated that several factors influence their stability, including overall chromatin structure and DNA supercoiling. Here, we review our understanding of processes that influence the formation and stability of cruciforms in genomes, covering the range of sequences shown to have biological significance. It is challenging to accurately sequence repetitive DNA sequences, but recent advances in sequencing methods have deepened understanding about the amounts of inverted repeats in genomes from all forms of life. We highlight that, in the majority of genomes, inverted repeats are present in higher numbers than is expected from a random occurrence. It is, therefore, becoming clear that inverted repeats play important roles in regulating many aspects of DNA metabolism, including replication, gene expression, and recombination. Cruciforms are targets for many architectural and regulatory proteins, including topoisomerases, p53, Rif1, and others. Notably, some of these proteins can induce the formation of cruciform structures when they bind to DNA. Inverted repeat sequences also influence the evolution of genomes, and growing evidence highlights their significance in several human diseases, suggesting that the inverted repeat sequences and/or DNA cruciforms could be useful therapeutic targets in some cases

    Chemopreventive Activities of Sulforaphane and Its Metabolites in Human Hepatoma HepG2 Cells

    Get PDF
    Sulforaphane (SFN) exhibits chemopreventive effects through various mechanisms. However, few studies have focused on the bioactivities of its metabolites. Here, three metabolites derived from SFN were studied, known as sulforaphane glutathione, sulforaphane cysteine and sulforaphane-N-acetylcysteine. Their effects on cell viability, DNA damage, tumorigenicity, cell migration and adhesion were measured in human hepatoma HepG2 cells, and their anti-angiogenetic effects were determined in a 3D co-culture model of human umbilical vein endothelial cells (HUVECs) and pericytes. Results indicated that these metabolites at high doses decreased cancer cell viability, induced DNA damage and inhibited motility, and impaired endothelial cell migration and tube formation. Additionally, pre-treatment with low doses of SFN metabolites protected against H₂O₂ challenge. The activation of the nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway and the induction of intracellular glutathione (GSH) played an important role in the cytoprotective effects of SFN metabolites. In conclusion, SFN metabolites exhibited similar cytotoxic and cytoprotective effects to SFN, which proves the necessity to study the mechanisms of action of not only SFN but also of its metabolites. Based on the different tissue distribution profiles of these metabolites, the most relevant chemical forms can be selected for targeted chemoprevention
    corecore