3 research outputs found

    Diffusion Sampler for Compound Specific Carbon Isotope Analysis of Dissolved Hydrocarbon Contaminants

    No full text
    Compound Specific Isotope Analysis (CSIA) is widely utilized to study the fate of organic contaminants in groundwater. To date, however, no method is available to obtain CSIA samples at a fine (cm) spatial scale across the sediment–surface water interface (SWI), a key boundary for discharge of contaminated groundwater to surface water. Dissolved contaminants in such discharged zones undergo rapid temporal and spatial changes due to heterogeneity in redox conditions and microbial populations. The compatibility of a passive sediment pore water sampler (“peeper”) to collect 40 mL samples for CSIA of benzene, toluene, monochlorobenzene, and 1,2-dichlorobenzene at field-relevant concentrations (0.1–5 mg L<sup>–1</sup>) was evaluated in laboratory experiments. Results demonstrate that physical diffusion across the polysulfone membrane does not alter the carbon isotope values (±0.5‰). Measured δ<sup>13</sup>C values also remain invariant despite significant adsorption of the compounds on the peeper material, an effect which increased with higher numbers of chlorine atoms and sorption coefficient (<i>K</i><sub>oc</sub>) values. In addition, isotope equilibrium between the peeper chamber and the sediment pore water occurred in less than a day, indicating the peeper method can be used to provide samples for CSIA analysis at fine spatial and temporal sampling resolutions in contaminated sediments

    Activated Carbon Mitigates Mercury and Methylmercury Bioavailability in Contaminated Sediments

    No full text
    There are few available in situ remediation options for Hg contaminated sediments, short of capping. Here we present the first tests of activated carbon and other sorbents as potential in situ amendments for remediation of mercury and methylmercury (MeHg), using a study design that combined 2 L sediment/water microcosms with 14 day bioaccumulation assays. Our key end points were pore water concentrations, and bioaccumulation of total Hg and MeHg by a deposit-feeding oligochaete <i>Lumbriculus variegatus</i>. Four amendments were tested: an activated carbon (AC); CETCO Organoclay MRM (MRM); Thiol-SAMMS (TS), a thiol-functionalized mesoporous silica; and AMBERSEP GT74, an ion-exchange resin. Amendments were tested in four separate microcosm assays using Hg-contaminated sediments from two freshwater and two estuarine sites. AC and TS amendments, added at 2–7% of the dry weight of sediments significantly reduced both MeHg concentrations in pore waters, relative to unamended controls (by 45–95%) and bioaccumulation of MeHg by <i>Lumbriculus</i> (by between 30 and 90%). Both amendments had only small impacts on microcosm surface water, sediment and pore water chemistry, with the exception of significant reductions in pore water dissolved organic matter. The effectiveness of amendments in reducing bioaccumulation was well-correlated with their effectiveness in increasing sediment:water partitioning, especially of MeHg. Sediments with low native sediment:water MeHg partition coefficients were most effectively treated. Thus, in situ sediment sorbent amendments may be able to reduce the risk of biotic Hg and MeHg uptake in contaminated sediments, and subsequent contamination of food webs

    Sediment Monitored Natural Recovery Evidenced by Compound Specific Isotope Analysis and High-Resolution Pore Water Sampling

    No full text
    Monitoring natural recovery of contaminated sediments requires the use of techniques that can provide definitive evidence of in situ contaminant degradation. In this study, a passive diffusion sampler, called “peeper”, was combined with Compound Specific Isotope Analysis to determine benzene and monochlorobenzene (MCB) stable carbon isotope values at a fine vertical resolution (3 cm) across the sediment water interface at a contaminated site. Results indicated significant decrease in concentrations of MCB from the bottom to the top layers of the sediment over 25 cm, and a 3.5 ‰ enrichment in δ<sup>13</sup>C values of MCB over that distance. Benzene was always at lower concentrations than MCB, with consistently more depleted δ<sup>13</sup>C values than MCB. The redox conditions were dominated by iron reduction along most of the sediment profile. These results provide multiple lines of evidence for in situ reductive dechlorination of MCB to benzene. Stable isotope analysis of contaminants in pore water is a valuable method to demonstrate in situ natural recovery of contaminated sediments. This novel high-resolution approach is critical to deciphering the combined effects of parent contaminant (e.g., MCB) degradation and both production and simultaneous degradation of daughter products, especially benzene
    corecore