945 research outputs found

    Van der Waals epitaxy of Bi2Se3 on Si(111) vicinal surface: An approach to prepare high-quality thin films of topological insulator

    Get PDF
    Epitaxial growth of topological insulator Bi2Se3 thin films on nominally flat and vicinal Si(111) substrates is studied. In order to achieve planner growth front and better quality epifilms, a two-step growth method is adopted for the van der Waal epitaxy of Bi2Se3 to proceed. By employing vicinal Si(111) substrate surfaces, the in-pane growth rate anisotropy of Bi2Se3 is explored to achieve single crystalline Bi2Se3 epifilms, in which threading defects and twins are effectively suppressed. Optimization of the growth parameters has resulted in vicinal Bi2Se3 films showing a carrier mobility of ~ 2000 cm2V-1s-1 and the background doping of ~ 3 x 1018 cm-3 of the as-grown layers. Such samples not only show relatively high magnetoresistance but also a linear dependence on magnetic field.Comment: 18 pages, 4 figure

    Image-Domain Material Decomposition for Dual-energy CT using Unsupervised Learning with Data-fidelity Loss

    Full text link
    Background: Dual-energy CT (DECT) and material decomposition play vital roles in quantitative medical imaging. However, the decomposition process may suffer from significant noise amplification, leading to severely degraded image signal-to-noise ratios (SNRs). While existing iterative algorithms perform noise suppression using different image priors, these heuristic image priors cannot accurately represent the features of the target image manifold. Although deep learning-based decomposition methods have been reported, these methods are in the supervised-learning framework requiring paired data for training, which is not readily available in clinical settings. Purpose: This work aims to develop an unsupervised-learning framework with data-measurement consistency for image-domain material decomposition in DECT

    Broadband 1-3 piezoelectric composite transducer design using Sierpinski Gasket fractal geometry

    Get PDF
    Wider operational bandwidth is an important requirement of an ultrasound transducer across many applications. In nature, it can be observed that several hearing organs possess a broad operating bandwidth by having a varying length scales structure. Moreover, conventional 1-3 piezoelectric composite transducers have been widely recognized for their wider bandwidth over their piezoelectric ceramic counterparts. In this paper, a novel 1-3 piezoelectric composite design using a fractal geometry, known as the Sierpinski Gasket (SG), is proposed in order to explore the potential of further extending the operational bandwidth and sensitivity of the transducer. Two equivalent 1-3 piezocomposite designs are compared to this end, one with a conventional periodic parallelepiped shaped pillar structure and one with the SG fractal geometry, both theoretically, using a finite element (FE) analysis package, and experimentally. The transmit voltage response and open circuit voltage response are used to illustrate bandwidth improvement from the fractal composite design. Following the simulation results, a 580 kHz single element transducer, utilizing the proposed SG fractal microstructure, is fabricated using a pillar placement methodology. The performance of the prototyped device is characterized and compared with a conventional 1-3 composite design, as well as with a commercial ultrasound transducer. In the one-way transmission mode, a bandwidth improvement of 27.2 % and sensitivity enhancement of 3.8 dB can be found with the SG fractal design compared to an equivalent conventional composite design and up 105.1 % bandwidth improvement when compared to the commercial transducer. In the one-way reception mode, the bandwidth improvement for the SG fractal design is 2.5 % and 32.9 % when compared to the conventional and commercial transducers, respectively

    Two-dimensional Transport Induced Linear Magneto-Resistance in Topological Insulator Bi2_2Se3_3 Nanoribbons

    Full text link
    We report the study of a novel linear magneto-resistance (MR) under perpendicular magnetic fields in Bi2Se3 nanoribbons. Through angular dependence magneto-transport experiments, we show that this linear MR is purely due to two-dimensional (2D) transport, in agreement with the recently discovered linear MR from 2D topological surface state in bulk Bi2Te3, and the linear MR of other gapless semiconductors and graphene. We further show that the linear MR of Bi2Se3 nanoribbons persists to room temperature, underscoring the potential of exploiting topological insulator nanomaterials for room temperature magneto-electronic applications.Comment: ACS Nano, in pres
    • …
    corecore