63 research outputs found

    CoSMoS Unravels Mysteries of Transcription Initiation

    Get PDF
    Using a fluorescence method called colocalization single-molecule spectroscopy (CoSMoS), Friedman and Gelles dissect the kinetics of transcription initiation at a bacterial promoter. Ultimately, CoSMoS could greatly aid the study of the effects of DNA sequence and transcription factors on both prokaryotic and eukaryotic promoters

    Roles of transcriptional and translational control mechanisms in regulation of ribosomal protein synthesis in Escherichia coli

    Get PDF
    ABSTRACTBacterial ribosome biogenesis is tightly regulated to match nutritional conditions and to prevent formation of defective ribosomal particles. InEscherichia coli, most ribosomal protein (r-protein) synthesis is coordinated with rRNA synthesis by a translational feedback mechanism: when r-proteins exceed rRNAs, specific r-proteins bind to their own mRNAs and inhibit expression of the operon. It was recently discovered that the second messenger nucleotide guanosine tetra and pentaphosphate (ppGpp), which directly regulates rRNA promoters, is also capable of regulating many r-protein promoters. To examine the relative contributions of the translational and transcriptional control mechanisms to the regulation of r-protein synthesis, we devised a reporter system that enabled us to genetically separate thecis-acting sequences responsible for the two mechanisms and to quantify their relative contributions to regulation under the same conditions. We show that the synthesis of r-proteins from the S20 and S10 operons is regulated by ppGpp following shifts in nutritional conditions, but most of the effect of ppGpp required the 5′ region of the r-protein mRNA containing the target site for translational feedback regulation and not the promoter. These results suggest that most regulation of the S20 and S10 operons by ppGpp following nutritional shifts is indirect and occurs in response to changes in rRNA synthesis. In contrast, we found that the promoters for the S20 operon were regulated during outgrowth, likely in response to increasing nucleoside triphosphate (NTP) levels. Thus, r-protein synthesis is dynamic, with different mechanisms acting at different times.IMPORTANCEBacterial cells have evolved complex and seemingly redundant strategies to regulate many high-energy-consuming processes. InE. coli, synthesis of ribosomal components is tightly regulated with respect to nutritional conditions by mechanisms that act at both the transcription and translation steps. In this work, we conclude that NTP and ppGpp concentrations can regulate synthesis of ribosomal proteins, but most of the effect of ppGpp is indirect as a consequence of translational feedback in response to changes in rRNA levels. Our results illustrate how effects of seemingly redundant regulatory mechanisms can be separated in time and that even when multiple mechanisms act concurrently their contributions are not necessarily equivalent.</jats:p

    Conservation of the S10-spc-α Locus within Otherwise Highly Plastic Genomes Provides Phylogenetic Insight into the Genus Leptospira

    Get PDF
    S10-spc-α is a 17.5 kb cluster of 32 genes encoding ribosomal proteins. This locus has an unusual composition and organization in Leptospira interrogans. We demonstrate the highly conserved nature of this region among diverse Leptospira and show its utility as a phylogenetically informative region. Comparative analyses were performed by PCR using primer sets covering the whole locus. Correctly sized fragments were obtained by PCR from all L. interrogans strains tested for each primer set indicating that this locus is well conserved in this species. Few differences were detected in amplification profiles between different pathogenic species, indicating that the S10-spc-α locus is conserved among pathogenic Leptospira. In contrast, PCR analysis of this locus using DNA from saprophytic Leptospira species and species with an intermediate pathogenic capacity generated varied results. Sequence alignment of the S10-spc-α locus from two pathogenic species, L. interrogans and L. borgpetersenii, with the corresponding locus from the saprophyte L. biflexa serovar Patoc showed that genetic organization of this locus is well conserved within Leptospira. Multilocus sequence typing (MLST) of four conserved regions resulted in the construction of well-defined phylogenetic trees that help resolve questions about the interrelationships of pathogenic Leptospira. Based on the results of secY sequence analysis, we found that reliable species identification of pathogenic Leptospira is possible by comparative analysis of a 245 bp region commonly used as a target for diagnostic PCR for leptospirosis. Comparative analysis of Leptospira strains revealed that strain H6 previously classified as L. inadai actually belongs to the pathogenic species L. interrogans and that L. meyeri strain ICF phylogenetically co-localized with the pathogenic clusters. These findings demonstrate that the S10-spc-α locus is highly conserved throughout the genus and may be more useful in comparing evolution of the genus than loci studied previously

    Visualization and quantitative analysis of complex formation between E.coli

    No full text

    Regulation of rRNA Transcription Correlates with Nucleoside Triphosphate Sensing

    No full text
    We have previously shown that the activity of the Escherichia coli rRNA promoter rrnB P1 in vitro depends on the concentration of the initiating nucleotide, ATP, and can respond to changes in ATP pools in vivo. We have proposed that this nucleoside triphosphate (NTP) sensing might contribute to regulation of rRNA transcription. To test this model, we have measured the ATP requirements for transcription from 11 different rrnB P1 core promoter mutants in vitro and compared them with the regulatory responses of the same promoters in vivo. The seven rrnB P1 variants that required much lower ATP concentrations than the wild-type promoter for efficient transcription in vitro were defective for response to growth rate changes in vivo (growth rate-dependent regulation). In contrast, the four variants requiring high ATP concentrations in vitro (like the wild-type promoter) were regulated with the growth rate in vivo. We also observed a correlation between NTP sensing in vitro and the response of the promoters in vivo to deletion of the fis gene (an example of homeostatic control), although this relationship was not as tight as for growth rate-dependent regulation. We conclude that the kinetic features responsible for the high ATP concentration dependence of the rrnB P1 promoter in vitro are responsible, at least in part, for the promoter's regulation in vivo, consistent with the model in which rrnB P1 promoter activity can be regulated by changes in NTP pools in vivo (or by hypothetical factors that work at the same kinetic steps that make the promoter sensitive to NTPs)

    Changes in the Concentrations of Guanosine 5′-Diphosphate 3′-Diphosphate and the Initiating Nucleoside Triphosphate Account for Inhibition of rRNA Transcription in Fructose-1,6-Diphosphate Aldolase (fda) Mutants

    No full text
    Early screens for conditional lethal mutations that affected rRNA expression in Escherichia coli identified temperature-sensitive fda mutants (fda encodes the glycolytic enzyme fructose-1,6-diphosphate aldolase). It was shown that these fda(Ts) mutants were severely impaired in rRNA synthesis upon shift to the restrictive temperature, although the mechanism of inhibition was never determined. Here, we bring resolution to this long-standing question by showing that changes in the concentrations of guanosine 5′-diphosphate 3′-diphosphate and initiating nucleoside triphosphates can account for the previously observed effects of fda mutations on rRNA transcription

    Linking glucose metabolism to the stringent response through the PTS

    No full text

    Fine structure of E. coli RNA polymerase-promoter interactions: α subunit binding to the UP element minor groove

    No full text
    The α subunit of E. coli RNAP plays an important role in the recognition of many promoters by binding to the A+T-rich UP element, a DNA sequence located upstream of the recognition elements for the ς subunit, the −35 and −10 hexamers. We examined DNA–RNAP interactions using high resolution interference and protection footprinting methods and using the minor groove-binding drug distamycin. Our results suggest that α interacts with bases in the DNA minor groove and with the DNA backbone along the minor groove, but that UP element major groove surfaces do not make a significant contribution to α binding. On the basis of these and previous results, we propose a model in which α contacts UP element DNA through amino acid residues located in a pair of helix–hairpin–helix motifs. Furthermore, our experiments extend existing information about recognition of the core promoter by ς(70) by identifying functional groups in the major grooves of the −35 and −10 hexamers in which modifications interfere with RNAP binding. These studies greatly improve the resolution of our picture of the promoter–RNAP interaction
    • …
    corecore