49 research outputs found

    Human Telomere Length Correlates to the Size of the Associated Chromosome Arm

    Get PDF
    The majority of human telomere length studies have focused on the overall length of telomeres within a cell. In fact, very few studies have examined telomere length for individual chromosome arms. The objective of this study was to examine the relationship between chromosome arm size and the relative length of the associated telomere. Quantitative Fluorescence In Situ Hybridization (Q-FISH) was used to measure the relative telomere length of each chromosome arm in metaphases from cultured lymphocytes of 17 individuals. A statistically significant positive correlation (r = 0.6) was found between telomere length and the size of the associated chromosome arm, which was estimated based on megabase pair measurements from http://www.ncbi.nlm.nih.gov/projects/mapview/

    Cryptic Subtelomeric Rearrangements and X Chromosome Mosaicism: A Study of 565 Apparently Normal Individuals with Fluorescent In Situ Hybridization

    Get PDF
    Five percent of patients with unexplained mental retardation have been attributed to cryptic unbalanced subtelomeric rearrangements. Half of these affected individuals have inherited the rearrangement from a parent who is a carrier for a balanced translocation. However, the frequency of carriers for cryptic balanced translocations is unknown. To determine this frequency, 565 phenotypically normal unrelated individuals were examined for balanced subtelomeric rearrangements using Fluorescent In Situ hybridization (FISH) probes for all subtelomere regions. While no balanced subtelomeric rearrangements were identified, three females in this study were determined to be mosaic for the X chromosome. Mosaicism for XXX cell lines were observed in the lymphocyte cultures of 3 in 379 women (0.8%), which is a higher frequency than the 1 in 1000 (0.1%) reported for sex chromosome aneuploidies. Our findings suggest that numerical abnormalities of the X chromosome are more common in females than previously reported. Based on a review of the literature, the incidence of cryptic translocation carriers is estimated to be approximately 1/8,000, more than ten-fold higher than the frequency of visible reciprocal translocations

    Periodontal Status and Quality of Life: Impact of Fear of Pain and Dental Fear

    Get PDF
    Background. Oral health-related quality of life (OHRQoL) is impacted by periodontal disease and orofacial pain. There is a limited research examining the impact of avoidance of care or physiological arousal related to the fear of pain response on periodontal-related OHRQoL. Methods. Data are from the Center for Oral Health Research in Appalachia family-based study focusing on 1,339 adults. Measures included a modified Periodontal Screening and Recording Index across sextants of dentition, dental fear survey, Fear of Pain Questionnaire-9, and Oral Health Impact Profile-14. Structural equation modeling was used to estimate the effects of periodontal disease screening indicators on OHRQoL including the mediating role of dental fear while accounting for fear of pain. Results. A significant total effect was found for the mandibular anterior sextant, components of dental anxiety/fear, and indicators of OHRQoL (pain and discomfort, , ; psychosocial impact, , ). The maxillary anterior region was significantly associated with pain discomfort (, ) and functionality (, ). Conclusions. Findings provide a granular perspective of periodontal disease indicators and OHRQoL. Dental avoidance/anticipatory fear and physiological arousal mediate OHRQoL in individuals who have indicators of periodontal disease in sextants that may be visible and susceptible to higher pain and psychosocial impact

    High throughput DNA sequencing to detect differences in the subgingival plaque microbiome in elderly subjects with and without dementia

    Get PDF
    BACKGROUND: To investigate the potential association between oral health and cognitive function, a pilot study was conducted to evaluate high throughput DNA sequencing of the V3 region of the 16S ribosomal RNA gene for determining the relative abundance of bacterial taxa in subgingival plaque from older adults with or without dementia. METHODS: Subgingival plaque samples were obtained from ten individuals at least 70 years old who participated in a study to assess oral health and cognitive function. DNA was isolated from the samples and a gene segment from the V3 portion of the 16S bacterial ribosomal RNA gene was amplified and sequenced using an Illumina HiSeq1000 DNA sequencer. Bacterial populations found in the subgingival plaque were identified and assessed with respect to the cognitive status and oral health of the participants who provided the samples. RESULTS: More than two million high quality DNA sequences were obtained from each sample. Individuals differed greatly in the mix of phylotypes, but different sites from different subgingival depths in the same subject were usually similar. No consistent differences were observed in this small sample between subjects separated by levels of oral health, sex, or age; however a consistently higher level of Fusobacteriaceae and a generally lower level of Prevotellaceae was seen in subjects without dementia, although the difference did not reach statistical significance, possibly because of the small sample size. CONCLUSIONS: The results from this pilot study provide suggestive evidence that alterations in the subgingival microbiome are associated with changes in cognitive function, and provide support for an expanded analysis of the role of the oral microbiome in dementia

    A Preliminary Genome-Wide Association Study of Pain-Related Fear: Implications for Orofacial Pain

    Get PDF
    Background. Acute and chronic orofacial pain can significantly impact overall health and functioning. Associations between fear of pain and the experience of orofacial pain are well-documented, and environmental, behavioral, and cognitive components of fear of pain have been elucidated. Little is known, however, regarding the specific genes contributing to fear of pain. Methods. A genome-wide association study (GWAS; ) was performed to identify plausible genes that may predispose individuals to various levels of fear of pain. The total score and three subscales (fear of minor, severe, and medical/dental pain) of the Fear of Pain Questionnaire-9 (FPQ-9) were modeled in a variance components modeling framework to test for genetic association with 8.5 M genetic variants across the genome, while adjusting for sex, age, education, and income. Results. Three genetic loci were significantly associated with fear of minor pain (8q24.13, 8p21.2, and 6q26; for all) near the genes TMEM65, NEFM, NEFL, AGPAT4, and PARK2. Other suggestive loci were found for the fear of pain total score and each of the FPQ-9 subscales. Conclusions. Multiple genes were identified as possible candidates contributing to fear of pain. The findings may have implications for understanding and treating chronic orofacial pain

    Effects of Smoking and Genotype on the PSR Index of Periodontal Disease in Adults Aged 18–49

    Get PDF
    Studies have found both genetic and environmental influences on chronic periodontitis. The purpose of this study was to examine the relationships among previously identified genetic variants, smoking status, and two periodontal disease-related phenotypes (PSR1 and PSR2) in 625 Caucasian adults (aged 18–49 years). The PSR Index was used to classify participants as affected or unaffected under the PSR1 and PSR2 phenotype definitions. Using logistic regression, we found that the form of the relationship varied by single nucleotide polymorphism (SNP): For rs10457525 and rs12630931, the effects of smoking and genotype on risk were additive; whereas for rs10457526 and rs733048, smoking was not independently associated with affected status once genotype was taken into consideration. In contrast, smoking moderated the relationships of rs3870371 and rs733048 with affected status such that former and never smokers with select genotypes were at increased genetic risk. Thus, for several groups, knowledge of genotype may refine the risk prediction over that which can be determined by knowledge of smoking status alone. Future studies should replicate these findings. These findings provide the foundation for the exploration of novel pathways by which periodontitis may occur

    Novel caries loci in children and adults implicated by genome-wide analysis of families

    Get PDF
    Background: Dental caries is a common chronic disease among children and adults alike, posing a substantial health burden. Caries is affected by multiple genetic and environmental factors, and prior studies have found that a substantial proportion of caries susceptibility is genetically inherited. Methods: To identify such genetic factors, we conducted a genome-wide linkage scan in 464 extended families with 2616 individuals from Iowa, Pennsylvania and West Virginia for three dental caries phenotypes: (1) PRIM: dichotomized as zero versus one or more affected primary teeth, (2) QTOT1: age-adjusted quantitative caries measure for both primary and permanent dentitions including pre-cavitated lesions, and (3) QTOT2: age-adjusted quantitative caries excluding pre-cavitated lesions. Genotyping was conducted for approximately 600,000 SNPs on an Illumina platform, pruned to 127,511 uncorrelated SNPs for the analyses reported here. Results: Multipoint non-parametric linkage analyses generated peak LOD scores exceeding 2.0 for eight genomic regions, but no LOD scores above 3.0 were observed. The maximum LOD score for each of the three traits was 2.90 at 1q25.3 for PRIM, 2.38 at 6q25.3 for QTOT1, and 2.76 at 5q23.3 for QTOT2. Some overlap in linkage regions was observed among the phenotypes. Genes with a potential role in dental caries in the eight chromosomal regions include CACNA1E, LAMC2, ALMS1, STAMBP, GXYLT2, SLC12A2, MEGF10, TMEM181, ARID1B, and, as well as genes in several immune gene families. Our results are also concordant with previous findings from association analyses on chromosomes 11 and 19. Conclusions: These multipoint linkage results provide evidence in favor of novel chromosomal regions, while also supporting earlier association findings for these data. Understanding the genetic etiology of dental caries will allow designing personalized treatment plans based on an individual’s genetic risk of disease

    Genome-Wide Association Study of Periodontal Health Measured by Probing Depth in Adults Ages 18−49 years

    Get PDF
    The etiology of chronic periodontitis clearly includes a heritable component. Our purpose was to perform a small exploratory genome-wide association study in adults ages 18–49 years to nominate genes associated with periodontal disease−related phenotypes for future consideration. Full-mouth periodontal pocket depth probing was performed on participants (N = 673), with affected status defined as two or more sextants with probing depths of 5.5 mm or greater. Two variations of this phenotype that differed in how missing teeth were treated were used in analysis. More than 1.2 million genetic markers across the genome were genotyped or imputed and tested for genetic association. We identified ten suggestive loci (p-value ≤ 1E-5), including genes/loci that have been previously implicated in chronic periodontitis: LAMA2, HAS2, CDH2, ESR1, and the genomic region on chromosome 14q21-22 between SOS2 and NIN. Moreover, we nominated novel loci not previously implicated in chronic periodontitis or related pathways, including the regions 3p22 near OSBPL10 (a lipid receptor implicated in hyperlipidemia), 4p15 near HSP90AB2P (a heat shock pseudogene), 11p15 near GVINP1 (a GTPase pseudogene), 14q31 near SEL1L (an intracellular transporter), and 18q12 in FHOD3 (an actin cytoskeleton regulator). Replication of these results in additional samples is needed. This is one of the first research efforts to identify genetic polymorphisms associated with chronic periodontitis-related phenotypes by the genome-wide association study approach. Though small, efforts such this are needed in order to nominate novel genes and generate new hypotheses for exploration and testing in future studies

    Genome-wide association Scan of dental caries in the permanent dentition

    Get PDF
    Background: Over 90% of adults aged 20 years or older with permanent teeth have suffered from dental caries leading to pain, infection, or even tooth loss. Although caries prevalence has decreased over the past decade, there are still about 23% of dentate adults who have untreated carious lesions in the US. Dental caries is a complex disorder affected by both individual susceptibility and environmental factors. Approximately 35-55% of caries phenotypic variation in the permanent dentition is attributable to genes, though few specific caries genes have been identified. Therefore, we conducted the first genome-wide association study (GWAS) to identify genes affecting susceptibility to caries in adults. Methods: Five independent cohorts were included in this study, totaling more than 7000 participants. For each participant, dental caries was assessed and genetic markers (single nucleotide polymorphisms, SNPs) were genotyped or imputed across the entire genome. Due to the heterogeneity among the five cohorts regarding age, genotyping platform, quality of dental caries assessment, and study design, we first conducted genome-wide association (GWA) analyses on each of the five independent cohorts separately. We then performed three meta-analyses to combine results for: (i) the comparatively younger, Appalachian cohorts (N = 1483) with well-assessed caries phenotype, (ii) the comparatively older, non-Appalachian cohorts (N = 5960) with inferior caries phenotypes, and (iii) all five cohorts (N = 7443). Top ranking genetic loci within and across meta-analyses were scrutinized for biologically plausible roles on caries. Results: Different sets of genes were nominated across the three meta-analyses, especially between the younger and older age cohorts. In general, we identified several suggestive loci (P-value ≤ 10E-05) within or near genes with plausible biological roles for dental caries, including RPS6KA2 and PTK2B, involved in p38-depenedent MAPK signaling, and RHOU and FZD1, involved in the Wnt signaling cascade. Both of these pathways have been implicated in dental caries. ADMTS3 and ISL1 are involved in tooth development, and TLR2 is involved in immune response to oral pathogens. Conclusions: As the first GWAS for dental caries in adults, this study nominated several novel caries genes for future study, which may lead to better understanding of cariogenesis, and ultimately, to improved disease predictions, prevention, and/or treatment

    Use of 16S ribosomal RNA gene analyses to characterize the bacterial signature associated with poor oral health in West Virginia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>West Virginia has the worst oral health in the United States, but the reasons for this are unclear. This pilot study explored the etiology of this disparity using culture-independent analyses to identify bacterial species associated with oral disease.</p> <p>Methods</p> <p>Bacteria in subgingival plaque samples from twelve participants in two independent West Virginia dental-related studies were characterized using 16S rRNA gene sequencing and Human Oral Microbe Identification Microarray (HOMIM) analysis. Unifrac analysis was used to characterize phylogenetic differences between bacterial communities obtained from plaque of participants with low or high oral disease, which was further evaluated using clustering and Principal Coordinate Analysis.</p> <p>Results</p> <p>Statistically different bacterial signatures (<it>P </it>< 0.001) were identified in subgingival plaque of individuals with low or high oral disease in West Virginia based on 16S rRNA gene sequencing. Low disease contained a high frequency of <it>Veillonella </it>and <it>Streptococcus</it>, with a moderate number of <it>Capnocytophaga</it>. High disease exhibited substantially increased bacterial diversity and included a large proportion of Clostridiales cluster bacteria (<it>Selenomonas</it>, <it>Eubacterium, Dialister</it>). Phylogenetic trees constructed using 16S rRNA gene sequencing revealed that Clostridiales were repeated colonizers in plaque associated with high oral disease, providing evidence that the oral environment is somehow influencing the bacterial signature linked to disease.</p> <p>Conclusions</p> <p>Culture-independent analyses identified an atypical bacterial signature associated with high oral disease in West Virginians and provided evidence that the oral environment influenced this signature. Both findings provide insight into the etiology of the oral disparity in West Virginia.</p
    corecore