10,485 research outputs found

    Vorticity-transport and unstructured RANS investigation of rotor-fuselage interactions

    Get PDF
    The prediction capabilities of unstructured primitive-variable and vorticity-transport-based Navier-Stokes solvers have been compared for rotorcraft-fuselage interaction. Their accuracies have been assessed using the NASA Langley ROBIN series of experiments. Correlation of steady pressure on the isolated fuselage delineates the differences between the viscous and inviscid solvers. The influence of the individual blade passage, model supports, and viscous effects on the unsteady pressure loading has been studied. Smoke visualization from the ROBIN experiment has been used to determine the ability of the codes to predict the wake geometry. The two computational methods are observed to provide similar results within the context of their physical assumptions and simplifications in the test configuration

    Identifying Sources and Sinks in the Presence of Multiple Agents with Gaussian Process Vector Calculus

    Full text link
    In systems of multiple agents, identifying the cause of observed agent dynamics is challenging. Often, these agents operate in diverse, non-stationary environments, where models rely on hand-crafted environment-specific features to infer influential regions in the system's surroundings. To overcome the limitations of these inflexible models, we present GP-LAPLACE, a technique for locating sources and sinks from trajectories in time-varying fields. Using Gaussian processes, we jointly infer a spatio-temporal vector field, as well as canonical vector calculus operations on that field. Notably, we do this from only agent trajectories without requiring knowledge of the environment, and also obtain a metric for denoting the significance of inferred causal features in the environment by exploiting our probabilistic method. To evaluate our approach, we apply it to both synthetic and real-world GPS data, demonstrating the applicability of our technique in the presence of multiple agents, as well as its superiority over existing methods.Comment: KDD '18 Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Pages 1254-1262, 9 pages, 5 figures, conference submission, University of Oxford. arXiv admin note: text overlap with arXiv:1709.0235

    Constraints on the anisotropy of dark energy

    Full text link
    If the equation of state of dark energy is anisotropic there will be additional quadrupole anisotropy in the cosmic microwave background induced by the time dependent anisotropic stress quantified in terms of Δw\Delta w. Assuming that the entire amplitude of the observed quadrupole is due to this anisotropy, we conservatively impose a limit of Δw<2.1×104|\Delta w| < 2.1\times 10^{-4} for any value of w1w\ge -1 assuming that Ωm<0.5\Omega_{\rm m}<0.5. This is considerably tighter than that which comes from SNe. Stronger limits, upto a factor of 10, are possible for specific values of Ωm\Omega_{\rm m} and ww. Since we assume this component is uncorrelated with the stochastic component from inflation, we find that both the expectation value and the sample variance are increased. There no improvement in the likelihood of an anomalously low quadrupole as suggested by previous work on an elliptical universe

    The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity

    Full text link
    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean-molecular weight (i.e., H2-dominated) and a high mean-molecular weight (i.e. water- and CO2-dominated). We find that atmospheres with a low mean-molecular weight have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations and hence stronger superrotation. In comparison, atmospheres with a high mean-molecular weight have larger day-night and equator-to-pole temperature variations than low mean-molecular weight atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO2-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and lightcurves for 50x solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50x solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.Comment: 12 pages, 11 figures, 2 tables, accepted to Ap
    corecore