6,799 research outputs found

    Relativistic N-boson systems bound by pair potentials V(r_{ij}) = g(r_{ij}^2)

    Full text link
    We study the lowest energy E of a relativistic system of N identical bosons bound by pair potentials of the form V(r_{ij}) = g(r_{ij}^2) in three spatial dimensions. In natural units hbar = c = 1 the system has the semirelativistic `spinless-Salpeter' Hamiltonian H = \sum_{i=1}^N \sqrt{m^2 + p_i^2} + \sum_{j>i=1}^N g(|r_i - r_j|^2), where g is monotone increasing and has convexity g'' >= 0. We use `envelope theory' to derive formulas for general lower energy bounds and we use a variational method to find complementary upper bounds valid for all N >= 2. In particular, we determine the energy of the N-body oscillator g(r^2) = c r^2 with error less than 0.15% for all m >= 0, N >= 2, and c > 0.Comment: 15 pages, 4 figure

    Convexity and potential sums for Salpeter-like Hamiltonians

    Full text link
    The semirelativistic Hamiltonian H = \beta\sqrt{m^2 + p^2} + V(r), where V(r) is a central potential in R^3, is concave in p^2 and convex in p. This fact enables us to obtain complementary energy bounds for the discrete spectrum of H. By extending the notion of 'kinetic potential' we are able to find general energy bounds on the ground-state energy E corresponding to potentials with the form V = sum_{i}a_{i}f^{(i)}(r). In the case of sums of powers and the log potential, where V(r) = sum_{q\ne 0} a(q) sgn(q)r^q + a(0)ln(r), the bounds can all be expressed in the semi-classical form E \approx \min_{r}{\beta\sqrt{m^2 + 1/r^2} + sum_{q\ne 0} a(q)sgn(q)(rP(q))^q + a(0)ln(rP(0))}. 'Upper' and 'lower' P-numbers are provided for q = -1,1,2, and for the log potential q = 0. Some specific examples are discussed, to show the quality of the bounds.Comment: 21 pages, 4 figure

    Discrete spectra of semirelativistic Hamiltonians from envelope theory

    Get PDF
    We analyze the (discrete) spectrum of the semirelativistic ``spinless-Salpeter'' Hamiltonian H = \beta \sqrt{m^2 + p^2} + V(r), beta > 0, where V(r) represents an attractive, spherically symmetric potential in three dimensions. In order to locate the eigenvalues of H, we extend the ``envelope theory,'' originally formulated only for nonrelativistic Schroedinger operators, to the case of Hamiltonians H involving the relativistic kinetic-energy operator. If V(r) is a convex transformation of the Coulomb potential -1/r and a concave transformation of the harmonic-oscillator potential r^2, both upper and lower bounds on the discrete eigenvalues of H can be constructed, which may all be expressed in the form E = min_{r>0} [ \beta \sqrt{m^2 + P^2/r^2} + V(r) ] for suitable values of the numbers P here provided. At the critical point, the relative growth to the Coulomb potential h(r) = -1/r must be bounded by dV/dh < 2 \beta/\pi.Comment: 20 pages, 2 tables, 4 figure

    Energy bounds for the spinless Salpeter equation: harmonic oscillator

    Get PDF
    We study the eigenvalues E_{n\ell} of the Salpeter Hamiltonian H = \beta\sqrt(m^2 + p^2) + vr^2, v>0, \beta > 0, in three dimensions. By using geometrical arguments we show that, for suitable values of P, here provided, the simple semi-classical formula E = min_{r > 0} {v(P/r)^2 + \beta\sqrt(m^2 + r^2)} provides both upper and lower energy bounds for all the eigenvalues of the problem.Comment: 8 pages, 1 figur

    Dispersal of \u3ci\u3eFenusa Dohrnii\u3c/i\u3e (Hymenoptera: Tenthredinidae) From an \u3ci\u3eAlnus\u3c/i\u3e Short-Rotation Forest Plantation

    Get PDF
    The European alder leafminer, Fenusa dohrnii, is a defoliating insect pest of Alnus in short-rotation forest plantations. A 2-year study was performed to quantify movement from infested stands to uninfested areas. Sticky traps and potted monitor trees were installed at different locations within and at various distances from (0,5, 10, and 20 m) an infested stand to measure adult flight and oviposition activity, respectively. Trap catch and oviposition activity fell off sharply with distance, few insects being trapped or eggs laid at distances of 5 m or greater from the infestation

    Relativistic N-Boson Systems Bound by Oscillator Pair Potentials

    Full text link
    We study the lowest energy E of a relativistic system of N identical bosons bound by harmonic-oscillator pair potentials in three spatial dimensions. In natural units the system has the semirelativistic ``spinless-Salpeter'' Hamiltonian H = \sum_{i=1}^N \sqrt{m^2 + p_i^2} + \sum_{j>i=1}^N gamma |r_i - r_j|^2, gamma > 0. We derive the following energy bounds: E(N) = min_{r>0} [N (m^2 + 2 (N-1) P^2 / (N r^2))^1/2 + N (N-1) gamma r^2 / 2], N \ge 2, where P=1.376 yields a lower bound and P=3/2 yields an upper bound for all N \ge 2. A sharper lower bound is given by the function P = P(mu), where mu = m(N/(gamma(N-1)^2))^(1/3), which makes the formula for E(2) exact: with this choice of P, the bounds coincide for all N \ge 2 in the Schroedinger limit m --> infinity.Comment: v2: A scale analysis of P is now included; this leads to revised energy bounds, which coalesce in the large-m limi

    Closed-form sums for some perturbation series involving associated Laguerre polynomials

    Full text link
    Infinite series sum_{n=1}^infty {(alpha/2)_n / (n n!)}_1F_1(-n, gamma, x^2), where_1F_1(-n, gamma, x^2)={n!_(gamma)_n}L_n^(gamma-1)(x^2), appear in the first-order perturbation correction for the wavefunction of the generalized spiked harmonic oscillator Hamiltonian H = -d^2/dx^2 + B x^2 + A/x^2 + lambda/x^alpha 0 0, A >= 0. It is proved that the series is convergent for all x > 0 and 2 gamma > alpha, where gamma = 1 + (1/2)sqrt(1+4A). Closed-form sums are presented for these series for the cases alpha = 2, 4, and 6. A general formula for finding the sum for alpha/2 = 2 + m, m = 0,1,2, ..., in terms of associated Laguerre polynomials, is also provided.Comment: 16 page

    Coulomb plus power-law potentials in quantum mechanics

    Full text link
    We study the discrete spectrum of the Hamiltonian H = -Delta + V(r) for the Coulomb plus power-law potential V(r)=-1/r+ beta sgn(q)r^q, where beta > 0, q > -2 and q \ne 0. We show by envelope theory that the discrete eigenvalues E_{n\ell} of H may be approximated by the semiclassical expression E_{n\ell}(q) \approx min_{r>0}\{1/r^2-1/(mu r)+ sgn(q) beta(nu r)^q}. Values of mu and nu are prescribed which yield upper and lower bounds. Accurate upper bounds are also obtained by use of a trial function of the form, psi(r)= r^{\ell+1}e^{-(xr)^{q}}. We give detailed results for V(r) = -1/r + beta r^q, q = 0.5, 1, 2 for n=1, \ell=0,1,2, along with comparison eigenvalues found by direct numerical methods.Comment: 11 pages, 3 figure
    • …
    corecore