9 research outputs found

    Verifying a questionnaire diagnosis of asthma in children using health claims data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood asthma prevalence is widely measured by parental proxy report of physician-diagnosed asthma in questionnaires. Our objective was to validate this measure in a North American population.</p> <p>Methods</p> <p>The 2884 study participants were a subsample of 5619 school children aged 5 to 9 years from 231 schools participating in the Toronto Child Health Evaluation Questionnaire study in 2006. We compared agreement between "questionnaire diagnosis" and a previously validated "health claims data diagnosis". Sensitivity, specificity and kappa were calculated for the questionnaire diagnosis using the health claims diagnosis as the reference standard.</p> <p>Results</p> <p>Prevalence of asthma was 15.7% by questionnaire and 21.4% by health claims data. Questionnaire diagnosis was insensitive (59.0%) but specific (95.9%) for asthma. When children with asthma-related symptoms were excluded, the sensitivity increased (83.6%), and specificity remained high (93.6%).</p> <p>Conclusions</p> <p>Our results show that parental report of asthma by questionnaire has low sensitivity but high specificity as an asthma prevalence measure. In addition, children with "asthma-related symptoms" may represent a large fraction of under-diagnosed asthma and they should be excluded from the inception cohort for risk factor studies.</p

    Do Questions Reflecting Indoor Air Pollutant Exposure from a Questionnaire Predict Direct Measure of Exposure in Owner-Occupied Houses?

    Get PDF
    Home characteristic questions are used in epidemiological studies and clinical settings to assess potentially harmful exposures in the home. The objective of this study was to determine whether questionnaire-reported home characteristics can predict directly measured pollutants. Sixty home inspections were conducted on a subsample of the 2006 population-based Toronto Child Health Evaluation Questionnaire. Indoor/outdoor air and settled dust samples were analyzed. Mean Fel d 1 was higher (p < 0.0001) in homes with a cat (450.58 μg/g) versus without (22.28 μg/g). Mean indoor NO2 was higher (p = 0.003) in homes with gas stoves (14.98 ppb) versus without (8.31 ppb). Self-reported musty odours predicted higher glucan levels (10554.37 μg/g versus 6308.58 μg/g, p = 0.0077). Der f 1 was predicted by the home’s age, but not by reports of carpets, and was higher in homes with mean relative humidity > 50% (61.30 μg/g, versus 6.24 μg/g, p = 0.002). Self-reported presence of a cat, a gas stove, musty odours, mice, and the home’s age and indoor relative humidity over 50% predicted measured indoor levels of cat allergens, NO2, fungal glucan, mouse allergens and dust mite allergens, respectively. These results are helpful for understanding the significance of indoor exposures ascertained by self-reporting in large epidemiological studies and also in the clinical setting

    Thinking Critically: How to Teach Translational Medicine

    No full text
    Translational Medicine (TM) is a comparatively new field of study that focusses on the continuum of activities from the conception of an idea, to advanced clinical testing and the development of a new medical technology or drug. In recent years, graduate education programs have been established internationally to train a new generation of professionals with specific skills necessary to navigate the translational landscape. Literature in the area highlights the importance of integrating specific competencies relevant to translational medicine as part of curriculum development. In addition to developing a working understanding of core knowledge (e.g., ethics, funding, regulation, policy, etc.), skills including effective communication, reflection, interdisciplinary, and interprofessional collaboration are critical components of a skilled TM professional. Curriculum development must focus on content, while carefully selecting the teaching strategies that are most effective to achieve the desired outcomes, which is for learners to comprehend the complex material. The following publication presents a series of vignettes that describe the experiences of an associate professor of molecular biology, who is looking to explore her role in translational medicine and develop skills for an innovative approach to problem-solving. The vignettes are focused on a variety of teaching and learning strategies that can be used to teach translational medicine. Each vignette includes a description of the experience from the perspective of the learner and the faculty as it pertains to the teaching strategy, method of delivery, and learning outcomes. TM is as complex to teach as it is to learn. The specialized skills and knowledges that are part of the TM toolbox cannot all be taught in a lecture format. Educators must consider multiple strategies and select those which are most effective for achieving the learning outcomes
    corecore