1,306 research outputs found

    3D Radiative Hydrodynamics for Disk Stability Simulations: A Proposed Testing Standard and New Results

    Full text link
    Recent three-dimensional radiative hydrodynamics simulations of protoplanetary disks report disparate disk behaviors, and these differences involve the importance of convection to disk cooling, the dependence of disk cooling on metallicity, and the stability of disks against fragmentation and clump formation. To guarantee trustworthy results, a radiative physics algorithm must demonstrate the capability to handle both the high and low optical depth regimes. We develop a test suite that can be used to demonstrate an algorithm's ability to relax to known analytic flux and temperature distributions, to follow a contracting slab, and to inhibit or permit convection appropriately. We then show that the radiative algorithm employed by Meji\'a (2004) and Boley et al. (2006) and the algorithm employed by Cai et al. (2006) and Cai et al. (2007, in prep.) pass these tests with reasonable accuracy. In addition, we discuss a new algorithm that couples flux-limited diffusion with vertical rays, we apply the test suite, and we discuss the results of evolving the Boley et al. (2006) disk with this new routine. Although the outcome is significantly different in detail with the new algorithm, we obtain the same qualitative answers. Our disk does not cool fast due to convection, and it is stable to fragmentation. We find an effective α≈10−2\alpha\approx 10^{-2}. In addition, transport is dominated by low-order modes.Comment: Submitted to Ap

    Self-gravitating fragmentation of eccentric accretion disks

    Full text link
    We consider the effects of eccentricity on the fragmentation of gravitationally unstable accretion disks, using numerical hydrodynamics. We find that eccentricity does not affect the overall stability of the disk against fragmentation, but significantly alters the manner in which such fragments accrete gas. Variable tidal forces around an eccentric orbit slow the accretion process, and suppress the formation of weakly-bound clumps. The "stellar" mass function resulting from the fragmentation of an eccentric disk is found to have a significantly higher characteristic mass than that from a corresponding circular disk. We discuss our results in terms of the disk(s) of massive stars at ~0.1pc from the Galactic Center, and find that the fragmentation of an eccentric accretion disk, due to gravitational instability, is a viable mechanism for the formation of these systems.Comment: 9 pages, 7 figures. Accepted for publication in Ap

    Complete replication of hepatitis C virus in cell culture.

    Get PDF
    Many aspects of the hepatitis C virus (HCV) life cycle have not been reproduced in cell culture, which has slowed research progress on this important human pathogen. Here, we describe a full-length HCV genome that replicates and produces virus particles that are infectious in cell culture (HCVcc). Replication of HCVcc was robust, producing nearly 10(5) infectious units per milliliter within 48 hours. Virus particles were filterable and neutralized with a monoclonal antibody against the viral glycoprotein E2. Viral entry was dependent on cellular expression of a putative HCV receptor, CD81. HCVcc replication was inhibited by interferon-alpha and by several HCV-specific antiviral compounds, suggesting that this in vitro system will aid in the search for improved antivirals

    Assessing the bioconfinement potential of a Nicotiana hybrid platform for use in plant molecular farming applications

    Get PDF
    Background The introduction of pharmaceutical traits in tobacco for commercial production could benefit from the utilization of a transgene bioconfinement system. It has been observed that interspecific F1Nicotiana hybrids (Nicotiana tabacum × Nicotiana glauca) are sterile and thus proposed that hybrids could be suitable bioconfined hosts for biomanufacturing. We genetically tagged hybrids with green fluorescent protein (GFP), which was used as a visual marker to enable gene flow tracking and quantification for field and greenhouse studies. GFP was used as a useful proxy for pharmaceutical transgenes. Results Analysis of DNA content revealed significant genomic downsizing of the hybrid relative to that of N. tabacum. Hybrid pollen was capable of germination in vitro, albeit with a very low frequency and with significant differences between plants. In two field experiments, one each in Tennessee and Kentucky, we detected outcrossing at only one location (Tennessee) at 1.4%. Additionally, from 50 hybrid plants at each field site, formation of 84 and 16 seed was observed, respectively. Similar conclusions about hybrid fertility were drawn from greenhouse crosses. In terms of above-ground biomass, the hybrid yield was not significantly different than that of N. tabacum in the field. Conclusion N. tabacum × N. glauca hybrids show potential to contribute to a bioconfinement- and biomanufacturing host system. Hybrids exhibit extremely low fertility with no difference of green biomass yields relative to N. tabacum. In addition, hybrids are morphologically distinguishable from tobacco allowing for identity preservation. This hybrid system for biomanufacturing would optimally be used where N. glauca is not present and in physical isolation of N. tabacum production to provide total bioconfinement

    Application of machine learning constructs to predict post-operative complications and adverse events following shoulder hemiarthroplasty

    Get PDF
    Background: Artificial intelligence (AI) constructs and machine learning (ML) algorithms have demonstrated utility in predicting various clinical, surgical, and financial outcomes. In this study, we applied AI to shoulder hemiarthroplasty (HA) to predict various post-operative complications. Methods: The sample was queried from the American college of surgeons-national surgical quality improvement program (ACS-NSQIP) database for all shoulder HA cases from 2008-2018. Six ML algorithms-random forest classifier, gradient boosting classifier, decision tree classifier, SVM classifier-tuned model, Gaussian Naïve Bayes classifier, multi-layer perception-analyzed the sample dataset. Postoperative complications included extended length of stay, non-home discharge destination, transfusion, and any adverse event. Each ML model was compared to logistic regression (LR), and model strength was evaluated. Results: We identified a total of 1585 shoulder HA cases. Mean age, BMI, operative time, and length of stay were 66±12 years, 31±8 kg/m2, 114±61 minutes, and 2.93±6.61 days. Preop hematocrit, longer operative time, and older age were most predictive of extended length of stay. Preop hematocrit, operative time, and ASA class had the highest importance in any adverse events (AAE) prediction. ML models outperformed traditional comorbidity indices, LR, for predicting extended length of stay (79% vs. 66%), non-home discharge destination (79% vs. 65%), any adverse event (78% vs. 66%), and transfusion requirement (82% vs. 63%).  Conclusions: ML algorithms predicted post-surgical outcomes of interest following shoulder HA at a higher rate to conventional LR and can assist orthopedic surgeons in decision making.
    • …
    corecore