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INTRODUCTION 

Hemiarthroplasty (HA) is traditionally employed as an 

intervention for younger patients with primary 

glenohumeral arthritis and complex proximal humerus 

fractures. Estimated 1-year cost of performing a primary 

HA procedure for a proximal humerus fracture is estimated 

at approximately $45,000.1 Moreover, approximately 38% 

require revision to shoulder arthroplasty in their lifetime, 

which is estimated to add an additional $23,377.1 These 

findings are corroborated by findings that demonstrate 

patients experience longer lengths of stay, higher surgical 

costs, and increased opioid consumption following HA 

compared to osteosynthesis, closed reduction and 

percutaneous pinning, and conservative management for 

proximal humerus fractures.2 

Recently, technological advancements to AI have 

revolutionized contemporary data analysis. Applying its 

predictive abilities perioperatively to patients undergoing 
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HA may represent a solution for practicing quality, cost-

effective medicine.3,4 ML, a branch of AI that utilizes data 

and algorithms to imitate the way in which humans learn, 

has vastly expanded our predictive capabilities within the 

healthcare field, and is especially efficacious when applied 

to retrospective, outcome-driven cohort studies. For 

example, Gowd et al. recently employed ML to validate a 

construct and predict short-term postoperative 

complications following total shoulder arthroplasty 

(TSA).5 Various outcomes, including need for transfusion, 

extended length of stay, surgical site infection, and any 

adverse event (amongst others), were predicted with 

higher affinity than conventional comorbidities indices, 

including American society of anesthesiologists (ASA) 

class, modified Charlson comorbidity index (mCCI), and 

frailty index. In this study, we utilized a ML construct that 

incorporates various patient characteristics, surgical 

factors, and perioperative variables to predict outcomes of 

interest following HA. 

METHODS 

In this study, we utilized the ACS-NSQIP database and 

received an exempt status from our institutional review 

board. The ACS-NSQIP database was queried using R 

studio (RStudio, PBC, Boston, MA) to identify adult 

patients undergoing shoulder HA from 2008 to 2018. 

Patients who underwent shoulder HA in the ACS-NSQIP 

database were identified using current procedural 

terminology (CPT) code 23470. Patients with malignancy 

and those containing missing data were excluded from 

analyses within our study.  

Patients that met criteria were analyzed by six ML 

algorithms: random forest classifier (RF), gradient 

boosting classifier (GB), decision tree classifier (DT), 

support vector machine classifier (SVM), Gaussian Naive 

Bayes classifier (GNB), and multi-layer perceptron 

classifier (MLP). We utilized each ML algorithm to 

predict the extended length of stay, non-home discharge, 

transfusion, and any adverse event using the SciKit-learn 

library in the Python programming language.6,7 As coded 

in ACS-NSQIP, non-home discharge was defined as 

discharge to “skilled care,” “rehabilitation 

facility,” “separate acute care,” “unskilled facility not 

home,” or “multi-level senior community”. Home 

discharge was defined as “home,” “facility which was 

home,” or “against medical advice”. AAE were defined as 

those having any one or multiple of the following: surgical 

site infection, renal complications, sepsis, intubation, 

transfusion, pneumonia, deep vein thrombosis (DVT), 

urinary tract infection (UTI), cerebrovascular accidents, 

cardiac arrest, myocardial infarction (MI), return to 

operating room, or death.  

Patient variables included demographic information, 

preoperative lab values, comorbidities, and operative time 

(Table 1). Patient variables were preprocessed using 

SciKit-Learn's StandardScaler and subsequently a 70:30 

train_test_split method was applied.6,8 This split our 

population into a training dataset consisting of 70% of the 

population and a testing dataset consisting of the 

remaining 30%. The 30% testing dataset would be later 

utilized for testing model performance. For each model, 

GridSearchCV was used to determine optimal 

hyperparameters for individual predictions.6,9 Along with 

GridSearchCV a stratified five-fold cross validation was 

used to ensure generalizability and prevent overfitting.6,9 

Once the appropriate hyperparameters were chosen, the 

final models were evaluated using the 30% testing subset 

to determine the model’s performance. 

The performance of the six ML models was then evaluated 

by a series of metrics including classification accuracy, 

sensitivity, specificity, and area under receiver operating 

characteristics curve (ROC AUC). Additionally, negative 

likelihood ratios (NLR) and positive likelihood ratios 

(PLR) were calculated using sensitivity and specificity. 

PLRs above 10 and NLRs below 0.1 are considered to 

provide strong evidence to rule in or rule out diagnoses in 

most circumstances, respectively.10 Subsequently, each 

model was categorized as acceptable, excellent, or 

outstanding based on AUC ranges of 0.70-0.79, 0.80-0.89, 

or 0.90 and greater, respectively.11 The graphical 

visualization of the ROCs produced by each of the models 

was accomplished through utilization of the Matplotlib 

library in python.12 For the highest-performing model in 

each prediction, the importance of each variable was 

quantified based on permutation feature importance (PFI) 

using the ELI5 library (version 0.11.0). PFI is derived by 

permuting a single feature through random shuffling or 

removal, which disrupts its association with predicted 

outcome. Consequently, a decrease in model's 

performance indicates the degree to which the model relies 

on that particular variable for making accurate 

predictions.13,14 

All subsequent statistical analyses were implemented 

using SPSS version 29 (IBM Corporation, 2021, Armonk, 

NY, USA) with a statistical significance defined as 

p<0.05. Categorical variables were analyzed using 

Pearson’s chi-square test; numerical variables were 

analyzed using independent sample t tests. 

RESULTS 

The patient dataset contained 1585 patients (906 male, 679 

female) with a mean age of 66 years (Table 1). The 

majority of patients (94%) were functionally independent 

upon admission and 58% had an ASA of 3. A frailty index 

of 1 was most common, followed by 0, accounting for 46% 

and 31% of patients respectively. The average LOS was 

2.9 days, with 19% of patients having an extended length 

of stay (>7 days). 

 Non-home discharge was required in 7% of patients, and 

7% of patients required transfusion. Postop adverse events 

occurred in 10% of patients, with transfusion being the 

most common at 7%, followed by return to operating room 

at 2% (Table 2). 
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AUC, accuracy, sensitivity, specificity, negative 

likelihood ratio, positive likelihood ratio 

We compared the performance of six different ML 

algorithms with LR in predicting various postoperative 

complications, including extended length of stay (LOS), 

non-home discharge, any adverse event (AAE), and 

transfusion requirement (Table 3 and Figure 1).  

For transfusion requirement, extended LOS, and AAE, all 

ML algorithms outperformed the LR model. For NHD, 

five of the ML models-RF, GB, GNB, MLP, SVM - 

demonstrated superior predictive ability than LR; while 

DT was the only ML model that was outperformed by 

traditional LR. The most predictive models for each 

outcome had acceptable or excellent AUCs. RF was the 

highest performing model for transfusion requirement, 

extended LOS, and AAE with AUCs of 0.90, 0.79, 0.78; 

specificities of 0.97, 0.77, 0.88; and accuracies of 93%, 

75%, 83%, respectively. GB was the most predictive 

model for NHD with an AUC of 0.79, specificity of 1.00, 

and accuracy of 93%.  

Notably, for transfusion requirement, the RF and GB 

models demonstrated PLRs of 13 and negative infinity, 

respectively. These PLR values indicate that any patient 

flagged by this algorithm to the need a transfusion will 

almost always experience that outcome. 

Table 1: Preoperative characteristics of study population with shoulder HA, n=1585. 

Variables Mean (± SD) or n (%) 

Demographics  

Age (In years) 66.25±12.45 

BMI (Kg/m2) 31.02±7.81 

Gender  

Male 906 (57) 

Female 679 (43) 

Race  

American Indian or Alaska native  10 (0.6) 

Asian 25 (1.6) 

Black or African American 84 (5.3) 

Native Hawaiian or Pacific Islander 6 (0.4) 

White 1268 (80) 

Unknown/ not reported 192 (12.1) 

Ethnicity Hispanic 75 (5) 

Functional status  

Independent 1496 (94) 

Partially dependent 75 (5) 

Totally dependent 14 (1) 

Comorbidities  

Smoking 240 (15) 

Diabetes  

Non-insulin dependent 218 (14) 

Insulin dependent 108 (7) 

Congestive heart failure 9 (0.6) 

COPD 119 (8) 

Dialysis 8 (0.5) 

Hypertension requiring medication 1029 (65) 

Dyspnea  

Moderate exertion 118 (7) 

At rest 5 (0.3) 

History of oral steroid use 85 (5) 

Bleeding disorder 54 (3) 

Weight loss 4 (0.3) 

Laboratory values  

Preoperative HCT 39.42±5.10  

Preoperative creatinine 0.93±0.51 

Preoperative BUN 17.79±8.10 

Preoperative WBC 7.67±2.62 

Preoperative platelet count 249.96±81.02 

Preoperative sodium 138.82±3.16 

Continued. 
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Variables Mean (± SD) or n (%) 

ASA classification  

1-No disturb  32 (2) 

2-Mild disturb 563 (36) 

3-Severe disturb 914 (58) 

4-Life threat 76 (5) 

Fragility index  

0 483 (30) 

1 731 (46) 

2 272 (17) 

3 63 (4) 

4 34 (2) 

5 2 (0.1) 

Operative time 113.76±61.22 

Table 2: Adverse events recorded, (n=1585). 

Variables Percentage (%) 

Extended length of stay  302 (19) 

Non-home discharge destination 109 (7) 

Transfusion 107 (7) 

AAE 166 (10) 

Surgical site infection 14 (0.9) 

Renal complications 5 (0.3) 

Sepsis 11 (0.7) 

Intubation 10 (0.6) 

Transfusion 107 (7) 

Pneumonia 15 (0.9) 

DVT 12 (0.8) 

UTI 21 (1) 

Cerebrovascular accident 1 (0.06) 

Cardiac arrest 3 (0.2) 

MI 7 (0.4) 

Return to OR 31 (2) 

Death 7 (0.4) 

Table 3: Performance metrics for ML algorithms. AUC, area under operator curve; PLR; NLR, PLR and NLR 

recorded as N/A when unable to be calculated (Dr. Phip rec table). 

Outcomes and algorithms ROC AUC Specificity Sensitivity Accuracy PLR NLR 

Transfusion        

Random forest classifier 0.899 0.97 0.38 93.1% 12.53 0.64 

Multi-layer perceptron 0.881 0.93 0.43 92.7% 6.34 0.61 

Gradient boosting classifier 0.876 1.00 0.19 94.6% -∞ 0.81 

SVM classifier 0.861 0.83 0.71 82.6% 4.32 0.34 

Gaussian Naive Bayes  

classifier 
0.830 0.93 0.43 90.0% 6.34 0.61 

Decision tree classifier 0.759 0.76 0.71 75.7% 2.98 0.38 

LR 0.632 0.57 0.57 57.4% 1.34 0.75 

Non-home discharge             

Gradient boosting classifier 0.787 1.00 0.00 93.1% N/A 1 

Random forest classifier 0.782 0.91 0.36 86.8% 3.83 0.70 

Multi-layer perceptron 0.771 0.94 0.14 92.7% 2.37 0.92 

SVM classifier 0.760 0.77 0.59 75.7% 2.56 0.53 

Gaussian Naive Bayes  

classifier 
0.732 0.94 0.14 88.6% 2.37 0.92 

LR 0.646 0.51 0.73 52.7% 1.49 0.53 

Decision tree classifier 0.631 0.83 0.36 79.5% 2.10 0.77 

Continued. 
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Outcomes and algorithms ROC AUC Specificity Sensitivity Accuracy PLR NLR 

Extended length of stay        

Random forest classifier 0.790 0.77 0.70 75.4% 3.00 0.39 

SVM classifier 0.790 0.75 0.70 74.1% 2.81 0.40 

Gradient boosting classifier 0.789 0.97 0.27 83.9% 9.79 0.75 

Gaussian Naive Bayes classifier 0.765 0.92 0.25 79.5% 3.21 0.81 

Multi-layer perceptron 0.758 0.92 0.25 82.6% 3.21 0.81 

Decision tree classifier 0.685 0.64 0.67 64.7% 1.86 0.52 

LR 0.655 0.60 0.63 60.3% 1.57 0.62 

Any adverse event             

Random forest classifier 0.776 0.88 0.39 83.3% 3.39 0.69 

Gradient boosting classifier 0.766 0.98 0.15 89.3% 7.17 0.87 

Gaussian Naive Bayes classifier 0.766 0.93 0.30 86.1% 4.10 0.75 

Multi-layer perceptron 0.751 0.93 0.30 88.3% 4.10 0.75 

SVM classifier 0.737 0.82 0.64 80.0% 3.48 0.45 

Decision tree classifier 0.734 0.70 0.76 70.3% 2.50 0.35 

LR 0.658 0.61 0.58 60.3% 1.46 0.70 

 

Figure 1: ROC of various ML algorithms applied to 

the outcome variables of interest: extended length of 

stay, non-home discharge, transfusion, and any 

adverse event. 

Permutation importance 

We utilized permutation factor importance (PFI) on the 

highest performing models to determine the most 

influential variables for outcome prediction of extended 

length of stay (LOS), any adverse event (AAE), 

transfusion requirement, and non-home discharge (NHD). 

The summary table containing PFIs and associated 

statistical significance utilizing p-values is provided in 

Table 4. For extended length of stay (LOS), we employed 

the RF model, which identified preoperative hematocrit 

emerged as the variable with the greatest importance 

(PFI=0.06, p<0.001), followed by operative time 

(PFI=0.03, p<0.001) and age (PFI=0.018, p<0.001). In 

predicting AAE, the RF model again identified 

preoperative hematocrit as the most important variable 

(PFI=0.08, p<0.001), followed by operative time 

(PFI=0.05, p<0.001) and ASA Class (PFI=0.02, p<0.001). 

Transfusion requirement was best predicted by age 

(PFI=0.09, p<0.001), preoperative hematocrit (PFI=0.06, 

p<0.001), and BMI (0.03, p<0.001). For NHD, the GB 

model exhibited the highest performance, and its 

permutation importance analysis indicated age as the 

variable with the most significant impact on outcome 

prediction (PFI=0.09, p<0.001). Additionally, 

preoperative hematocrit (PFI=0.06, p<0.001) and BMI 

(PFI=0.03, p<0.001) were identified as influential factors. 

Table 4: PFI of variables predictive of outcomes following shoulder HA, as determined by the highest performing 

algorithm. p<0.05 considered significant, (n=1585). 

Outcomes and variables (ML 

model) 

Experienced adverse event 

(Count or average ± SD) 

Did not experience event 

(Count or average ± SD) 
PFI P value 

Length of stay (RF) Extended length of stay Average length of stay   

Preoperative hematocrit 36.25±5.47% 40.16±4.72% 0.059 <0.001 

Operative time 141.17±90.02 minutes 107.30±50.10 minutes 0.033 <0.001 

Age (In years) 70.74±12.91 65.20±12.12 0.018 <0.001 

Discharge destination (GB) Non-home discharge (1) Home discharge (0)   

Age (In years) 72.90±12.28  65.76±12.33 0.091 <0.001 

Preoperative hematocrit 36.67±4.94% 39.62±5.06% 0.063 <0.001 

Body mass index (kg/m2) 27.34±7.80 31.29±7.75 0.026 <0.001 

Continued. 
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Outcomes and variables (ML 

model) 

Experienced adverse event 

(Count or average ± SD) 

Did not experience event 

(Count or average ± SD) 
PFI P value 

Transfusion requirement 

(RF) 
Received transfusion Did not receive transfusion   

Age (In years) 71.97±11.30 65.84±12.44 0.091 <0.001 

Preoperative hematocrit 33.07±5.16% 39.88±4.79% 0.063 <0.001 

Body mass index (kg/m2) 28.25±7.67 31.22±7.79 0.026 <0.001 

Any adverse event (RF) Experienced Did not experience   

Preoperative hematocrit 34.90±5.72% 39.95±4.76% 0.078 <0.001 

Operative time 146.02±85.98 minutes 109.98±56.49 minutes 0.045 <0.001 

ASA class 4 28 (1.77%) 48 (3.03%) 0.016 <0.001 

DISCUSSION 

In this study, we employed six ML algorithms to analyze 

various patient characteristics, surgical variables, and 

other values to predict post-operative outcomes of interest 

following HA. ML algorithms outperformed the LR model 

for transfusion requirement, extended LOS, and AAE. RF 

was the highest performing algorithm overall with AUCs 

of 0.90, 0.79, 0.78; specificities of 0.97, 0.77, 0.88; and 

accuracies of 93%, 75%, 83%, respectively. For NHD, five 

of the ML models-RF, GB, GNB, MLP, SVM-

demonstrated superior predictive ability than the LR 

model; DT was the only ML model that was outperformed 

by traditional LR. GB was the most predictive model for 

NHD with an AUC=0.79, specificity of 1.00, and accuracy 

of 93%. Preoperative hematocrit was identified as the most 

influential variable across all four outcomes on 

permutation importance analysis with a PFI=0.06 

(p<0.001) for extended LOS, PFI=0.08 (p<0.001) for 

AAE, PFI=0.06 (p<0.001) for transfusion requirement, 

and PFI=0.06 (p<0.001) for NHD.  

Multiple studies have previously applied traditional 

statistical measures to evaluate outcomes in shoulder 

arthroplasty. Khazzam et al used logistic multivariate 

analysis to implicate kidney injury (GFR<60 mL/min), 

anemia, and coagulopathy as individual factors associated 

with an increased 30-day risk of several postoperative 

complications.15 Similarly, Koh et al also identify 

numerous peri-operative variables, including age>80, 

cardiovascular disease, concomitant periprosthetic 

fracture, and revision surgery, as mediators of acute 

postoperative adverse events which included 

complications, readmission, thromboembolic events, need 

for blood transfusion, mortality, and need for revision 

surgery.16 Our application of ML to outcome-driven, 

predictive modeling in shoulder HA yielded results that 

largely reflected prior literature. In our study, hematocrit 

was identified as the most important variable in predicting 

extended length of stay and any adverse event. And age, 

not hematocrit, that most strongly correlated with need for 

transfusion as well as non-home discharge, although 

hematocrit and BMI were statistically significant 

predictive variables for both as well. Other variables 

implicated in adverse outcomes include operative time and 

ASA classification. These findings align with previous 

literature emphasizing the significance of preoperative 

hematocrit (p<0.01 for LOS, AAE, NHD, and transfusion 

requirement) in predicting adverse outcomes, as well as 

the influence of age on the complications, as supported by 

the studies conducted by Khazzam et al and the Koh et 

al.15,16 

In addition to validating previous literature, our ML 

approach offers a practical and versatile application of 

procedure-specific information that can greatly benefit 

clinical practice across various disciplines. One notable 

advantage is the potential integration of our predictive 

model with traditional preoperative risk assessment and 

stratification methods. As highlighted by Hill et al one of 

the key advantages of ML is its automated nature and 

ability to leverage information from electronic medical 

records.17 By employing an automated tool that analyzes 

readily available clinical data within the patient's chart, we 

can supplement traditional risk stratification indices, such 

as the ASA classification and fragility index. Utilizing 

objective clinical data that is readily accessible before or 

upon admission, ML algorithms can provide valuable 

insights to better characterize preoperative risk.17-21 For 

instance, our analysis consistently identified preoperative 

hematocrit as a significant variable, which aligns with 

previous studies demonstrating the importance of 

addressing low hematocrit levels in patients undergoing 

reverse TSA and HA following a proximal humerus 

fracture to mitigate the risk of 30-day mortality.15 This 

approach utilizes both subjective variables that are present 

in current preoperative risk classifications and objective 

variables such as comorbidities, functional status, and 

overall health, enhancing the accuracy and 

comprehensiveness of risk assessment. 

This ML tool serves as a valuable supplement in clinical 

decision-making and pre-surgical discussions with 

patients. By doing so, healthcare professionals can engage 

in open conversations with both the surgical team and the 

patient, ensuring that appropriate measures are taken to 

minimize risks and maximize positive outcomes. With the 

added weight of cuts to Medicare reimbursement and the 

bundled payment care initiative (BPCI), it becomes 

imperative to have a reliable tool that can assist surgeons 

and patients in increasing postoperative success and 

reducing potential complications. By harnessing the power 

of ML algorithms, we not only aim to improve patient 

outcomes but also to address the issue of healthcare 

expenditure in a more efficient and the effective 

manner.9,22-24 
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In addition to serving as a tool for risk stratification and a 

supplement to help with alleviating healthcare 

expenditure, it also contributes to the ongoing literature 

that aims to validate ML and AI as tools to aid in clinical 

decision-making. This body of literature includes those 

that have created valid ML algorithms to predict outcomes 

after hip fractures, total knee arthroplasty, total hip 

arthroplasty, and chondrosarcoma.25,26 Our results in this 

study are comparative to studies that utilized ML for other 

orthopedic operations and can serve as a validated 

construct to provide results based on objective data.  

Limitations of this study include the ACS-NSQIP 

database, which is de-identified, so several factors are not 

reported and could not be used in the analysis such as 

surgeon experience, changes in surgical technique, patient 

medications, and preventive measures that had already 

been taken preoperatively. Of note, complications and 

variables that were analyzed were those restricted to the 

confines of this dataset. Additionally, the ACS-NSQIP 

database only records data up to 30 days after a procedure; 

therefore, any complications that occurred after 30 days 

will not be noted in this dataset. This study was also 

retrospective in nature, and this limits the control of 

variables. Finally, the ACS-NSQIP data comes from 

institutions that are capable of staffing clinical reviewers 

for quality assurance of the data. Therefore, smaller 

surgical centers and institutions that are not capable of 

staffing clinical reviewers are not represented within this 

database and limits the applicability of our results. 

Additionally, PFI provides insight into the relative 

importance of variables in ML models.14 While PFI can 

indicate important variables, it should not be interpreted as 

absolute importance.  

For example, comparing two equally important variables 

in a smaller subset may lead to overestimating their 

importance. Therefore, PFI does not directly predict risk 

factors but instead offers perspective for clinical 

correlation of different variables. 

CONCLUSION 

AI models outperformed LR in predicting non-home 

discharge, need for transfusion, extended length of stay, 

and any adverse event with high accuracy. Preoperative 

hematocrit, followed by age, then body mass index were 

highlighted as variables of high importance in predicting 

postoperative complications. These findings demonstrate a 

tool that can help supplement the traditional preoperative 

risk stratification process, provide postoperative 

complication risks based on objective data, and help 

diminish the expenditure associated with the 

musculoskeletal disorders. 
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