4,812 research outputs found

    The Role of Gas in the Merging of Massive Black Holes in Galactic Nuclei. I. Black Hole Merging in a Spherical Gas Cloud

    Full text link
    Using high-resolution SPH numerical simulations, we investigate the effects of gas on the inspiral and merger of a massive black hole binary. This study is motivated by both observational and theoretical work that indicate the presence of large amounts of gas in the central regions of merging galaxies. N-body simulations have shown that the coalescence of a massive black hole binary eventually stalls in a stellar background. However, our simulations suggest that the massive black hole binary will finally merge if it is embedded in a gaseous background. Here we present results in which the gas is assumed to be initially spherical with a relatively smooth distribution. In the early evolution of the binary, the separation dimishes due to the gravitational drag exerted by the background gas. In the later stages, when the binary dominates the gravitational potential in its vicinity, the medium responds by forming an ellipsoidal density enhancement whose axis lags behind the binary axis, and this offset produces a torque on the binary that causes continuing loss of angular momentum and is able to reduce the binary separation to distances where gravitational radiation is efficient. Assuming typical parameters from observations of Ultra Luminous Infrared Galaxies, we predict that a black hole binary will merge within 10710^{7}yrs; therefore these results imply that in a merger of gas-rich galaxies, any massive central black holes will coalescence soon after the galaxies merge. Our work thus supports scenarios of massive black hole evolution and growth where hierarchical merging plays an important role. The final coalescence of the black holes leads to gravitational radiation emission that would be detectable up to high redshift by LISA. We show that similar physical effects are important for the formation of close binary stars.Comment: 38 pages, 14 figures, submitted to Ap

    Asymptotic Behavior of Inflated Lattice Polygons

    Full text link
    We study the inflated phase of two dimensional lattice polygons with fixed perimeter NN and variable area, associating a weight exp[pAJb]\exp[pA - Jb ] to a polygon with area AA and bb bends. For convex and column-convex polygons, we show that /Amax=1K(J)/p~2+O(ρp~)/A_{max} = 1 - K(J)/\tilde{p}^2 + \mathcal{O}(\rho^{-\tilde{p}}), where p~=pN1\tilde{p}=pN \gg 1, and ρ<1\rho<1. The constant K(J)K(J) is found to be the same for both types of polygons. We argue that self-avoiding polygons should exhibit the same asymptotic behavior. For self-avoiding polygons, our predictions are in good agreement with exact enumeration data for J=0 and Monte Carlo simulations for J0J \neq 0. We also study polygons where self-intersections are allowed, verifying numerically that the asymptotic behavior described above continues to hold.Comment: 7 page

    Maintenance of Paternal Methylation and Repression of the Imprinted H19 Gene Requires MBD3

    Get PDF
    Paternal repression of the imprinted H19 gene is mediated by a differentially methylated domain (DMD) that is essential to imprinting of both H19 and the linked and oppositely imprinted Igf2 gene. The mechanisms by which paternal-specific methylation of the DMD survive the period of genome-wide demethylation in the early embryo and are subsequently used to govern imprinted expression are not known. Methyl-CpG binding (MBD) proteins are likely candidates to explain how these DMDs are recognized to silence the locus, because they preferentially bind methylated DNA and recruit repression complexes with histone deacetylase activity. MBD RNA and protein are found in preimplantation embryos, and chromatin immunoprecipitation shows that MBD3 is bound to the H19 DMD. To test a role for MBDs in imprinting, two independent RNAi-based strategies were used to deplete MBD3 in early mouse embryos, with the same results. In RNAi-treated blastocysts, paternal H19 expression was activated, supporting the hypothesis that MBD3, which is also a member of the Mi-2/NuRD complex, is required to repress the paternal H19 allele. RNAi-treated blastocysts also have reduced levels of the Mi-2/NuRD complex protein MTA-2, which suggests a role for the Mi-2/NuRD repressive complex in paternal-specific silencing at the H19 locus. Furthermore, DNA methylation was reduced at the H19 DMD when MBD3 protein was depleted. In contrast, expression and DNA methylation were not disrupted in preimplantation embryos for other imprinted genes. These results demonstrate new roles for MBD3 in maintaining imprinting control region DNA methylation and silencing the paternal H19 allele. Finally, MBD3-depleted preimplantation embryos have reduced cell numbers, suggesting a role for MBD3 in cell division

    Dissociation cross sections of ground-state and excited charmonia with light mesons in the quark model

    Get PDF
    We present numerical results for the dissociation cross sections of ground-state, orbitally- and radially-excited charmonia in collisions with light mesons. Our results are derived using the nonrelativistic quark model, so all parameters are determined by fits to the experimental meson spectrum. Examples of dissociation into both exclusive and inclusive final states are considered. The dissociation cross sections of several C=(+) charmonia may be of considerable importance for the study of heavy ion collisions, since these states are expected to be produced more copiously than the J/psi. The relative importance of the productions of ground-state and orbitally-excited charmed mesons in a pion-charmonium collision is demonstrated through the s\sqrt {s}-dependent charmonium dissociation cross sections.Comment: 9 pages, 8 figure

    Self-avoiding walks and polygons on the triangular lattice

    Full text link
    We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monomer from the end points. For self-avoiding polygons to length 58 we calculate series for the mean-square radius of gyration and the first 10 moments of the area. Analysis of the series yields accurate estimates for the connective constant of triangular self-avoiding walks, μ=4.150797226(26)\mu=4.150797226(26), and confirms to a high degree of accuracy several theoretical predictions for universal critical exponents and amplitude combinations.Comment: 24 pages, 6 figure

    Validation of Tikhonov adaptively regularized gamma variate fitting with 24-h plasma clearance in cirrhotic patients with ascites

    Get PDF
    PURPOSE: The aim was to compare late-time extrapolation of plasma clearance (CL) from Tikhonov adaptively regularized gamma variate fitting (Tk-GV) and from mono-exponential (E1) fitting. METHODS: Ten (51)Cr-ethylenediaminetetraacetic acid bolus IV studies in adults--8 with ascites--assessed for liver transplantation, with 12-16 plasma samples drawn from 5-min to 24-h, were fit with Tk-GV and E1 models and CL results were compared using Passing-Bablok fitting. RESULTS: The 24-h CL(Tk-GV) values ranged from 11.4 to 79.7 ml/min. Linear regression of 4- versus 24-h CL(Tk-GV) yielded no significant departure from a slope of 1, whereas the 4- versus 24-h CL(E1) slope, 1.56, was significantly increased. For CL(Tk-GV-24-h) versus CL(E1-24-h), there was a biased slope and intercept (0.85, 5.97 ml/min). Moreover, the quality of fitting of 24-h data was significantly better for Tk-GV than for E1, as follows. For 10 logarithm of concentration curves, higher r values were obtained for each Tk-GV fit (median 0.998) than for its corresponding E1 fit (median 0.965), with p < 0.0001 (paired t-test of z-statistics from Fisher r-z transformations). The E1 fit quality degraded with increasing V/W [volume of distribution (l) per kg body weight, p = 0.003]. However, Tk-GV fit quality versus V/W was uncorrelated (p = 0.8). CONCLUSION: CL(E1) values were dependent on sample time and the quality of fit was poor and degraded with increasing ascites, consistent with current opinion that CL(E1) is contraindicated in ascitic patients. CL(Tk-GV) was relatively more accurate and the good quality of fit was unaffected by ascites. CL(Tk-GV) was the preferred method for the accurate calculation of CL and was useful despite liver failure and ascites

    Parameters That Affect Fear Responses in Rodents and How to Use Them for Management

    Get PDF
    The strong innate fear response shown by laboratory rodents to predator cues could provide powerful and innovative tools for pest management. Predator cues are routinely used to induce fear and anxiety in laboratory rodents for pharmacological studies. However, research on the fear response induced by predator cues in different species of rodents in the wild has been inconclusive with results often contradictory to laboratory experiments. Potential explanations for this inconsistency include the prey's: (i) physiological state; (ii) parasite load; (iii) differential intensity of perceived threats; (iv) fear learning and habituation; and (v) information gathering. In this review, we first explore current knowledge on the sensory mechanisms and capabilities of rodents, followed by the discussion of each of these explanations within the context of their implications for the use of antipredator response as a pest rodent management tool. Finally, we make recommendations on potential solutions and strategies to resolve issues in rodent management related to these hypotheses

    Phase-Locking of Vortex Lattices Interacting with Periodic Pinning

    Full text link
    We examine Shapiro steps for vortex lattices interacting with periodic pinning arrays driven by AC and DC currents. The vortex flow occurs by the motion of the interstitial vortices through the periodic potential generated by the vortices that remain pinned at the pinning sites. Shapiro steps are observed for fields B_{\phi} < B < 2.25B_{\phi} with the most pronouced steps occuring for fields where the interstitial vortex lattice has a high degree of symmetry. The widths of the phase-locked current steps as a function of the magnitude of the AC driving are found to follow a Bessel function in agreement with theory.Comment: 5 pages 5 postscript figure
    corecore