5,128 research outputs found
Protein Modifications as Potential Biomarkers in Breast Cancer
A variety of post-translational protein modifications (PTMs) are known to be altered as a result of cancer development. Thus, these PTMs are potentially useful biomarkers for breast cancer. Mass spectrometry, antibody microarrays and immunohistochemistry techniques have shown promise for identifying changes in PTMs. In this review, we summarize the current literature on PTMs identified in the plasma and tumor tissue of breast-cancer patients or in breast cell lines. We also discuss some of the analytical techniques currently being used to evaluate PTMs
Onset of runaway nucleation in aerosol reactors
The onset of homogeneous nucleation of new particles from the products of gas phase chemical reactions was explored using an aerosol reactor in which seed particles of silicon were grown by silane pyrolysis. The transition from seed growth by cluster deposition to catastrophic nucleation was extremely abrupt, with as little as a 17% change in the reactant concentration leading to an increase in the concentration of measurable particles of four orders of magnitude. From the structure of the particles grown near this transition, it is apparent that much of the growth occurs by the accumulation of clusters on the growing seed particles. The time scale for cluster diffusion indicates, however, that the clusters responsible for growth must be much smaller than the apparent fine structure of the product particles
Aerosol reactor production of uniform submicron powders
A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K
Submicron silicon powder production in an aerosol reactor
Powder synthesis by thermally induced vapor phase reactions is described. The powder generated by this technique consists of spherical, nonagglomerated particles of high purity. The particles are uniform in size, in the 0.1–0.2 µm size range. Most of the particles are crystalline spheres. A small fraction of the spheres are amorphous. Chain agglomerates account for less than 1% of the spherules
Collagen matrix stiffness influences on fibroblast contraction force
Cell-embedded hydrogel has been widely used as engineered tissue equivalents in biomedical applications. In this study, contraction force in human aortic adventitial fibroblasts seeded within a 3D collagen matrix was quantified by a novel force sensing technique. We demonstrate that contraction forces in cells treated with histamine are regulated by the gel stiffness in a linear manner. These findings provide novel insights for the design of collagen-based biomaterials for tissue engineering and clinical applications
Spin-Fluctuation-Induced Non-Fermi-Liquid Behavior with suppressed superconductivity in LiFeCoAs
A series of LiFeCoAs compounds with different Co concentrations
have been studied by transport, optical spectroscopy, angle-resolved
photoemission spectroscopy and nuclear magnetic resonance. We observed a Fermi
liquid to non-Fermi liquid to Fermi liquid (FL-NFL-FL) crossover alongside a
monotonic suppression of the superconductivity with increasing Co content. In
parallel to the FL-NFL-FL crossover, we found that both the low-energy spin
fluctuations and Fermi surface nesting are enhanced and then diminished,
strongly suggesting that the NFL behavior in LiFeCoAs is induced
by low-energy spin fluctuations which are very likely tuned by Fermi surface
nesting. Our study reveals a unique phase diagram of LiFeCoAs
where the region of NFL is moved to the boundary of the superconducting phase,
implying that they are probably governed by different mechanisms.Comment: 10 pages, 11 figure
Timed-Elastic-Band Based Variable Splitting for Autonomous Trajectory Planning
Existing trajectory planning methods are struggling to handle the issue of
autonomous track swinging during navigation, resulting in significant errors
when reaching the destination. In this article, we address autonomous
trajectory planning problems, which aims at developing innovative solutions to
enhance the adaptability and robustness of unmanned systems in navigating
complex and dynamic environments. We first introduce the variable splitting
(VS) method as a constrained optimization method to reimagine the renowned
Timed-Elastic-Band (TEB) algorithm, resulting in a novel collision avoidance
approach named Timed-Elastic-Band based variable splitting (TEB-VS). The
proposed TEB-VS demonstrates superior navigation stability, while maintaining
nearly identical resource consumption to TEB. We then analyze the convergence
of the proposed TEB-VS method. To evaluate the effectiveness and efficiency of
TEB-VS, extensive experiments have been conducted using TurtleBot2 in both
simulated environments and real-world datasets
- …