649 research outputs found
Recommended from our members
Using Broad Phonetic Group Experts for Improved Speech Recognition
In phoneme recognition experiments, it was found that approximately 75% of misclassified frames were assigned labels within the same broad phonetic group (BPG). While the phoneme can be described as the smallest distinguishable unit of speech, phonemes within BPGs contain very similar characteristics and can be easily confused. However, different BPGs, such as vowels and stops, possess very different spectral and temporal characteristics. In order to accommodate the full range of phonemes, acoustic models of speech recognition systems calculate input features from all frequencies over a large temporal context window. A new phoneme classifier is proposed consisting of a modular arrangement of experts, with one expert assigned to each BPG and focused on discriminating between phonemes within that BPG. Due to the different temporal and spectral structure of each BPG, novel feature sets are extracted using mutual information, to select a relevant time-frequency (TF) feature set for each expert. To construct a phone recognition system, the output of each expert is combined with a baseline classifier under the guidance of a separate BPG detector. Considering phoneme recognition experiments using the TIMIT continuous speech corpus, the proposed architecture afforded significant error rate reductions up to 5% relative
An Uncoupled Oscillator Model for evoked potential dynamical modelling
A mathematical model for evoked potentials
is outlined. The model has been developed by
considering phase synchronisation of the underlying
neurological processes. Tbe model, consisting of an
ensemble of uncoupled linear oscillators with a gaussian
distribution of frequencies is shown to reproduce tbe
typical response of PIOO visual evoked response. Tbe
model structure is parallel in form and is considered to
be pbysiologically realistic. It is also sbown that tbe
calculated behaviour of tbe ensemble can be generated
by a 2"" order linear differential equation with time
varying coefficients, thus highlighting the fact that
entirely different physical structures can generate
identical responses
Temporal discrimination: Mechanisms and relevance to adult-onset dystonia
Temporal discrimination is the ability to determine that two sequential sensory stimuli are separated in time. For any individual, the temporal discrimination threshold (TDT) is the minimum interval at which paired sequential stimuli are perceived as being asynchronous; this can be assessed, with high test-retest and inter-rater reliability, using a simple psychophysical test. Temporal discrimination is disordered in a number of basal ganglia diseases including adult-onset dystonia, of which the two most common phenotypes are cervical dystonia and blepharospasm. The causes of adult-onset focal dystonia are unknown; genetic, epigenetic, and environmental factors are relevant. Abnormal TDTs in adult-onset dystonia are associated with structural and neurophysiological changes considered to reflect defective inhibitory interneuronal processing within a network which includes the superior colliculus, basal ganglia, and primary somatosensory cortex. It is hypothesized that abnormal temporal discrimination is a mediational endophenotype and, when present in unaffected relatives of patients with adult-onset dystonia, indicates non-manifesting gene carriage. Using the mediational endophenotype concept, etiological factors in adult-onset dystonia may be examined including (i) the role of environmental exposures in disease penetrance and expression; (ii) sexual dimorphism in sex ratios at age of onset; (iii) the pathogenesis of non-motor symptoms of adult-onset dystonia; and (iv) subcortical mechanisms in disease pathogenesis
Audiovisual Processing is Abnormal in Parkinson\u27s Disease and Correlates with Freezing of Gait and Disease Duration
Background: Sensory and perceptual disturbances progress with disease duration in Parkinson’s disease (PD) and probably contribute to motor deficits such as bradykinesia and gait disturbances, including freezing of gait (FOG). Simple reaction time tests are ideal to explore sensory processing, as they require little cognitive processing. Multisensory integration is the ability of the brain to integrate sensory information from multiple modalities into a single coherent percept, which is crucial for complex motor tasks such as gait. 9 10 11 12 13 Objectives: The aims of this study were to: 1. Assess differences in unisensory (auditory and visual) and multisensory processing speed in people with PD and age-matched healthy controls. 2. Compare relative differences in unisensory processing in people with PD with disease duration and freezing of gait status taking into account the motor delays, which are invariably present in PD. 3. Compare relative differences in multisensory (audiovisual) processing between the PD cohort and age-matched controls. 14 15 16 17 Methods: 39 people with PD (23 with FOG) and 17 age-matched healthy controls performed a reaction time task in response to unisensory (auditory-alone, visual-alone) and multisensory (audiovisual) stimuli. 18 19 Results: The PD group were significantly slower than controls for all conditions compared with healthy controls but auditory reaction times were significantly faster than visual for the PD group only. These relative unisensory differences are correlated with disease duration and divide the PD group by FOG status, but these factors are co-dependent. Although multisensory facilitation occurs in PD, it is significantly less enhanced than in healthy controls. 20 21 22 23 Conclusion: There are significant unisensory and multisensory processing abnormalities in PD. The relative differences in unisensory processing are specific to PD progression, providing a link between these sensory abnormalities and a motor feature of PD. Sensory disturbances have previously been postulated to be central to FOG but this is the first study to predict audiovisual processing abnormalities using FOG status. The multisensory processing abnormalities are independent of disease duration and FOG status and may be a potential biomarker for the disease
Brain-Computer Interfaces, Virtual Reality, and Videogames
Major challenges must be tackled for brain-computer interfaces to mature into an established communications medium for VR applications, which will range from basic neuroscience studies to developing optimal peripherals and mental gamepads and more efficient brain-signal processing techniques
Predicting asthma exacerbations employing remotely monitored adherence
This Letter investigated the efficacy of a decision-support system, designed for respiratory medicine, at predicting asthma exacerbations in a multi-site longitudinal randomised control trial. Adherence to inhaler medication was acquired over 3 months from patients with asthma employing a dose counter and a remote monitoring adherence device which recorded participant\u27s inhaler use: n = 184 (23,656 audio files), 61% women, age (mean ± sd) 49.3 ± 16.4. Data on occurrence of exacerbations was collected at three clinical visits, 1 month apart. The relative risk of an asthma exacerbation for those with good and poor adherence was examined employing a univariate and multivariate modified Poisson regression approach; adjusting for age, gender and body mass index. For all months dose counter adherence was significantly (p \u3c 0.01) higher than remote monitoring adherence. Overall, those with poor adherence had a 1.38 ± 0.34 and 1.42 ± 0.39 (remotely monitored) and 1.25 ± 0.32 and 1.18 ± 0.31 (dose counter) higher relative risk of an exacerbation in model 1 and model 2, respectively. However, this was not found to be statistically significantly different. Remotely monitored adherence holds important clinical information and future research should focus on refining adherence and exacerbation measures. Decision-support systems based on remote monitoring may enhance patient-physician communication, possibly reducing preventable adverse events
Isolating endogenous visuo-spatial attentional effects using the novel visual-evoked spread spectrum analysis (VESPA) technique
In natural visual environments, we use attention to select between relevant and irrelevant stimuli that are presented simultaneously.
Our attention to objects in our visual field is largely controlled endogenously, but is also affected exogenously through the influence of novel stimuli and events. The study of endogenous and exogenous attention as separate mechanisms has been possible in behavioral and functional imaging studies, where multiple stimuli can be presented continuously and simultaneously. It has also been possible in electroencephalogram studies using the steady-state visual-evoked potential (SSVEP); however, it has not been possible in conventional event-related potential (ERP) studies, which are hampered by the need to present suddenly onsetting stimuli in isolation. This is unfortunate as the ERP technique allows for the analysis of human physiology with much greater temporal resolution than functional magnetic resonance imaging or the SSVEP. While ERP studies of endogenous attention have been widely reported, these experiments have a serious limitation in that the suddenly onsetting stimuli, used to elicit the ERP, inevitably have an exogenous, attention-grabbing effect. Recently we have shown that it is possible to derive separate event-related responses to concurrent, continuously presented stimuli using the VESPA (visual-evoked spread spectrum analysis) technique. In this study we employed an experimental paradigm based on this method, in which two pairs of diagonally opposite, non-contiguous disc-segment
stimuli were presented, one pair to be ignored and the other to be attended. VESPA responses derived for each pair showed a strong modulation at 90–100 ms (during the visual P1 component), demonstrating the utility of the method for isolating endogenous visuospatial attention effects
Neural Correlates of Abnormal Temporal Discrimination in Unaffected Relatives of Cervical Dystonia Patients
Background: An abnormal temporal discrimination threshold in cervical dystonia (CD) is considered to be a mediational endophenotype; in unaffected relatives it is hypothesized to indicate non-manifesting gene carriage. The pathogenesis underlying this condition remains unknown. Investigation of the neural networks involved in disordered temporal discrimination may highlight its pathomechanisms.Objective: To examine resting state brain function in unaffected relatives of CD patients with normal and abnormal temporal discrimination. We hypothesized that the endophenotype, an abnormal temporal discrimination, would manifest as altered connectivity in relatives in regions associated with CD, thereby illuminating the neural substrates of the link between temporal discrimination and CD.Methods: Rs-fMRI data was analyzed from two sex- and age-matched cohorts: 16 unaffected relatives of CD patients with normal temporal discrimination and 16 with abnormal temporal discrimination. Regional and whole brain functional connectivity measures were extracted via Independent Component Analysis (ICA), Regional Homogeneity (ReHo), and Amplitude of Low Frequency (ALFF) analyses.Results: Our ICA analysis revealed increased connectivity within both the executive control and cerebellar networks and decreased connectivity within the sensorimotor network in relatives with abnormal temporal discrimination when compared to relatives with normal temporal discrimination. The ReHo and ALFF analyses complimented these results and demonstrated connectivity differences in areas corresponding to motor planning, movement coordination, visual information processing, and eye movements in unaffected relatives with abnormal temporal discrimination.Conclusion: Disordered connectivity in unaffected relatives with abnormal temporal discrimination illuminates neural substrates underlying endophenotype expression and supports the hypothesis that genetically determined aberrant connectivity, when later coupled with unknown environmental triggers, may lead to disease penetrance
Cognitive and Structural Correlates of Conversational Speech Timing in Mild Cognitive Impairment and Mild-to-Moderate Alzheimer’s Disease : Relevance for Early Detection Approaches.
FUNDING This study was supported by a Centre for Ageing Research and Development in Ireland (CARDI) Leadership Fellowship (grant number 13533).Peer reviewedPublisher PD
- …