33 research outputs found

    Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the prehairpin intermediate of the spike protein

    Get PDF
    Publisher Copyright: © 2022 National Academy of Sciences. All rights reserved.Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available coronavirus disease 2019 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors, which block formation of the so-called heptad repeat 1 and 2 (HR1HR2) six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. We performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based and virus-based assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ∼100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a prehairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the prehairpin intermediate of the S protein.Peer reviewe

    Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein EBNA1

    Get PDF
    AbstractThe crystal structure of the DNA-binding and dimerization domains of the Epstein-Barr virus nuclear antigen 1 (EBNAI), which binds to and activates DNA replication from the latent origin of replication in Epstein-Barr virus, was solved at 2.5 A resolution. EBNA1 appears to bind DNA via two independent regions termed the core and the flanking DNA-binding domains. The core DNA-binding domain, which comprises both the dimerization domain and a helix predicted to bind the inner portion of the EBNA1 DNA recognition element, was remarkably similar to the structure of the papillomavirus E2 protein, despite a complete lack of sequence conservation. The flanking DNA-binding domain, only a portion of which is contained in the current structure, consists in part of an α helix whose N-terminus contacts the outer regions of the EBNA1 DNA recognition element

    Sensory deficit screen identifies nsf mutation that differentially affects SNARE recycling and quality control

    No full text
    Summary: The AAA+ NSF complex is responsible for SNARE complex disassembly both before and after membrane fusion. Loss of NSF function results in pronounced developmental and degenerative defects. In a genetic screen for sensory deficits in zebrafish, we identified a mutation in nsf, I209N, that impairs hearing and balance in a dosage-dependent manner without accompanying defects in motility, myelination, and innervation. In vitro experiments demonstrate that while the I209N NSF protein recognizes SNARE complexes, the effects on disassembly are dependent upon the type of SNARE complex and I209N concentration. Higher levels of I209N protein produce a modest decrease in binary (syntaxin-SNAP-25) SNARE complex disassembly and residual ternary (syntaxin-1A-SNAP-25-synaptobrevin-2) disassembly, whereas at lower concentrations binary disassembly activity is strongly reduced and ternary disassembly activity is absent. Our study suggests that the differential effect on disassembly of SNARE complexes leads to selective effects on NSF-mediated membrane trafficking and auditory/vestibular function
    corecore