53 research outputs found

    Multimodal Differential Emission Measure in the Solar Corona

    Get PDF
    The Atmospheric Imaging Assembly (AIA) telescope on board the Solar Dynamics Observatory (SDO) provides coronal EUV imaging over a broader temperature sensitivity range than the previous generations of instruments (EUVI, EIT, and TRACE). Differential emission measure tomography (DEMT) of the solar corona based on AIA data is presented here for the first time. The main product of DEMT is the three-dimensional (3D) distribution of the local differential emission measure (LDEM). While in previous studies, based on EIT or EUVI data, there were 3 available EUV bands, with a sensitivity range ∼0.60−2.70\sim 0.60 - 2.70 MK, the present study is based on the 4 cooler AIA bands (aimed at studying the quiet sun), sensitive to the range ∼0.55−3.75\sim 0.55 - 3.75 MK. The AIA filters allow exploration of new parametric LDEM models. Since DEMT is better suited for lower activity periods, we use data from Carrington Rotation 2099, when the Sun was in its most quiescent state during the AIA mission. Also, we validate the parametric LDEM inversion technique by applying it to standard bi-dimensional (2D) differential emission measure (DEM) analysis on sets of simultaneous AIA images, and comparing the results with DEM curves obtained using other methods. Our study reveals a ubiquitous bimodal LDEM distribution in the quiet diffuse corona, which is stronger for denser regions. We argue that the nanoflare heating scenario is less likely to explain these results, and that alternative mechanisms, such as wave dissipation appear better supported by our results.Comment: 52 pages, 18 figure

    Millisecond Exoplanet Imaging, II: Regression Equations and Technical Discussion

    Full text link
    The leading difficulty in achieving the contrast necessary to directly image exoplanets and associated structures (eg. protoplanetary disks) at wavelengths ranging from the visible to the infrared are quasi-static speckles, and they are hard to distinguish from planets at the necessary level of precision. The source of the quasi-static speckles is hardware aberrations that are not compensated by the adaptive optics system. These aberrations are called non-common path aberrations (NCPA). In 2013, Frazin showed how, in principle, simultaneous millisecond (ms) telemetry from the wavefront sensor (WFS) and the science camera behind a stellar coronagraph can be used as input into a regression scheme that simultaneously and self-consistently estimates the NCPA and the sought-after image of the planetary system (the exoplanet image). The physical principle underlying the regression method is rather simple: the wavefronts, which are measured by the WFS, modulate the speckles caused by the NCPA and therefore can be used as probes of the optical system. The most important departure from realism in the author's 2013 article was the assumption that the WFS made error-free measurements. The simulations in Part I provide results on the joint regression on the NCPA and the exoplanet image from three different methods, called the ideal, the naive, and the bias-corrected estimators. The ideal estimator is not physically realizable but is a useful as a benchmark for simulation studies, but the other two are, at least in principle. This article provides the regression equations for all three of these estimators as well as a supporting technical discussion. Briefly, the naive estimator simply uses the noisy WFS measurements without any attempt to account for the errors, and the bias-corrected estimator uses statistical knowledge of the wavefronts to treat errors in the WFS measurements.Comment: 13 pages, 2 figures, submitted to JOSA

    The WHI Corona from Differential Emission Measure Tomography

    Get PDF
    A three dimensional (3D) tomographic reconstruction of the local differential emission measure (LDEM) of the global solar corona during the whole heliosphere interval (WHI, Carrington rotation CR-2068) is presented, based on STEREO/EUVI images. We determine the 3D distribution of the electron density, mean temperature, and temperature spread, in the range of heliocentric heights 1.03 to 1.23 Rsun. The reconstruction is complemented with a potential field source surface (PFSS) magnetic-field model. The streamer core, streamer legs, and subpolar regions are analyzed and compared to a similar analysis previously performed for CR-2077, very near the absolute minimum of the Solar Cycle 23. In each region, the typical values of density and temperature are similar in both periods. The WHI corona exhibits a streamer structure of relatively smaller volume and latitudinal extension than during CR-2077, with a global closed-to-open density contrast about 6% lower, and a somewhat more complex morphology. The average basal electron density is found to be about 2.23 and 1.08 x 10^8 cm^-3, in the streamer core and subpolar regions, respectively. The electron temperature is quite uniform over the analyzed height range, with average values of about 1.13 and 0.93 MK, in the streamer core and subpolar regions, respectively. Within the streamer closed region, both periods show higher temperatures at mid-latitudes and lower temperatures near the equator. Both periods show beta>1 in the streamer core and beta<1 in the surrounding open regions, with CR-2077 exhibiting a stronger contrast. Hydrostatic fits to the electron density are performed, and the scale height is compared to the LDEM mean electron temperature. Within the streamer core, the results are consistent with an isothermal hydrostatic plasma regime, with the temperatures of ions and electrons differing by up to about 10% .. (continues)..Comment: 13 Figure

    Newly Discovered Global Temperature Structures in the Quiet Sun at Solar Minimum

    Get PDF
    Magnetic loops are building blocks of the closed-field corona. While active region loops are readily seen in images taken at EUV and X-ray wavelengths, quiet Sun loops are seldom identifiable and therefore difficult to study on an individual basis. The first analysis of solar minimum (Carrington Rotation 2077) quiet Sun (QS) coronal loops utilizing a novel technique called the Michigan Loop Diagnostic Technique (MLDT) is presented. This technique combines Differential Emission Measure Tomography (DEMT) and a potential field source surface (PFSS) model, and consists of tracing PFSS field lines through the tomographic grid on which the Local Differential Emission Measure (LDEM) is determined. As a result, the electron temperature Te and density Ne at each point along each individual field line can be obtained. Using data from STEREO/EUVI and SOHO/MDI, the MLDT identifies two types of QS loops in the corona: so-called "up" loops in which the temperature increases with height, and so-called "down" loops in which the temperature decreases with height. Up loops are expected, however, down loops are a surprise, and furthermore, they are ubiquitous in the low-latitude corona. Up loops dominate the QS at higher latitudes. The MLDT allows independent determination of the empirical pressure and density scale heights, and the differences between the two remain to be explained. The down loops appear to be a newly discovered property of the solar minimum corona that may shed light on the physics of coronal heating. The results are shown to be robust to the calibration uncertainties of the EUVI instrument.Comment: Accepted for publication in The Astrophysical Journal, waiting for the full biblio inf
    • …
    corecore