313 research outputs found

    Postsynaptic protein kinase a reduces neuronal excitability in response to increased synaptic excitation in the Drosophila CNS

    Get PDF
    Previous work has identified a role for synaptic activity in the development of excitable properties of motoneurons in the Drosophila embryo. In this study the underlying mechanism that enables two such neurons, termed aCC and RP2, to respond to increased exposure to synaptic excitation is characterized. Synaptic excitation is increased in genetic backgrounds that lack either a cAMP-specific phosphodiesterase (EC:3.1.4, dunce) or acetylcholinesterase (EC:3.1.1.7, ace), the enzyme that terminates the endogenous cholinergic excitation of these motoneurons. Analysis of membrane excitability in aCC/RP2, in either background, shows that these neurons have a significantly reduced capability to fire action potentials (APs) in response to injection of depolarizing current. Analysis of underlying voltage-gated currents show that this effect is associated with a marked reduction in magnitude of the voltage-dependent inward Na+ current (INa). Partially blocking INa in these motoneurons, using low concentrations of TTX, demonstrates that a reduction of INa is, by itself, sufficient to reduce membrane excitability. An analysis of firing implicates an increased AP threshold to underlie the reduction in membrane excitability observed because of heightened exposure to synaptic excitation. Genetic or pharmacological manipulations that either elevate cAMP or increase protein kinase A (PKA) activity in wild-type aCC/RP2 mimic both the reductions in membrane excitability and INa. In comparison, increasing cAMP catabolism or inhibition of PKA activity is sufficient to block the induction of these activity-dependent changes. The induced changes in excitability can be rapid, occurring within 5 min of exposure to a membrane-permeable cAMP analog, indicative that threshold can be regulated in these neurons by a post-translational mechanism that is dependent on phosphorylation

    Regulation of synaptic connectivity: levels of fasciclin II influence synaptic growth in the Drosophila CNS

    Get PDF
    Much of our understanding of synaptogenesis comes from studies that deal with the development of the neuromuscular junction (NMJ). Although well studied, it is not clear how far the NMJ represents an adequate model for the formation of synapses within the CNS. Here we investigate the role of Fasciclin II (Fas II) in the development of synapses between identified motor neurons and cholinergic interneurons in the CNS of Drosophila. Fas II is a neural cell adhesion molecule homolog that is involved in both target selection and synaptic plasticity at the NMJ in Drosophila. In this study, we show that levels of Fas II are critical determinants of synapse formation and growth in the CNS. The initial establishment of synaptic contacts between these identified neurons is seemingly independent of Fas II. The subsequent proliferation of these synaptic connections that occurs postembryonically is, in contrast, significantly retarded by the absence of Fas II. Although the initial formation of synaptic connectivity between these neurons is seemingly independent of Fas II, we show that their formation is, nevertheless, significantly affected by manipulations that alter the relative balance of Fas II in the presynaptic and postsynaptic neurons. Increasing expression of Fas II in either the presynaptic or postsynaptic neurons, during embryogenesis, is sufficient to disrupt the normal level of synaptic connectivity that occurs between these neurons. This effect of Fas II is isoform specific and, moreover, phenocopies the disruption to synaptic connectivity observed previously after tetanus toxin light chain-dependent blockade of evoked synaptic vesicle release in these neurons

    Regulation of neuronal excitability through pumilio-dependent control of a sodium channel gene

    Get PDF
    Dynamic changes in synaptic connectivity and strength, which occur during both embryonic development and learning, have the tendency to destabilize neural circuits. To overcome this, neurons have developed a diversity of homeostatic mechanisms to maintain firing within physiologically defined limits. In this study, we show that activity-dependent control of mRNA for a specific voltage-gated Na+ channel [encoded by paralytic (para)] contributes to the regulation of membrane excitability in Drosophila motoneurons. Quantification of para mRNA, by real-time reverse-transcription PCR, shows that levels are significantly decreased in CNSs in which synaptic excitation is elevated, whereas, conversely, they are significantly increased when synaptic vesicle release is blocked. Quantification of mRNA encoding the translational repressor pumilio (pum) reveals a reciprocal regulation to that seen for para. Pumilio is sufficient to influence para mRNA. Thus, para mRNA is significantly elevated in a loss-of-function allele of pum (pumbemused), whereas expression of a full-length pum transgene is sufficient to reduce para mRNA. In the absence of pum, increased synaptic excitation fails to reduce para mRNA, showing that Pum is also necessary for activity-dependent regulation of para mRNA. Analysis of voltage-gated Na+ current (INa) mediated by para in two identified motoneurons (termed aCC and RP2) reveals that removal of pum is sufficient to increase one of two separable INa components (persistent INa), whereas overexpression of a pum transgene is sufficient to suppress both components (transient and persistent). We show, through use of anemone toxin (ATX II), that alteration in persistent INa is sufficient to regulate membrane excitability in these two motoneurons

    Cellular excitability and the regulation of functional neuronal identity: from gene expression to neuromodulation

    Get PDF
    The intrinsic properties of a neuron determine the translation of synaptic input to axonal output. It is this input– output relationship that is the heart of all nervous system activity. As such, the overall regulation of the intrinsic excitability of a neuron directly determines the output of that neuron at a given point in time, giving the cell a unique “functional identity.” To maintain this distinct functional output, neurons must adapt to changing patterns of synaptic excitation. These adaptations are essential to prevent neurons from either falling silent as synaptic excitation falls or becoming saturated as excitation increases. In the absence of stabilizing mechanisms, activity-dependent plasticity could drive neural activity to saturation or quiescence. Furthermore, as cells adapt to changing patterns of synaptic input, presumably the overall balance of intrinsic conductances of the cell must be maintained so that reliable output is achieved (Daoudal and Debanne, 2003; Turrigiano and Nelson, 2004; Frick and Johnston, 2005). Although these regulatory phenomena have been well documented, the molecular and physiological mechanisms involved are poorly understood

    Pumilio binds para mRNA and requires nanos and brat to regulate sodium current in drosophila motoneurons

    Get PDF
    Homeostatic regulation of ionic currents is of paramount importance during periods of synaptic growth or remodeling. Our previous work has identified the translational repressor Pumilio (Pum) as a regulator of sodium current (INa) and excitability in Drosophila motoneurons. In this current study, we show that Pum is able to bind directly the mRNA encoding the Drosophila voltage-gated sodium channel paralytic (para). We identify a putative binding site for Pum in the 3' end of the para open reading frame (ORF). Characterization of the mechanism of action of Pum, using whole-cell patch clamp and real-time reverse transcription-PCR, reveals that the full-length protein is required for translational repression of para mRNA. Additionally, the cofactor Nanos is essential for Pum-dependent para repression, whereas the requirement for Brain Tumor (Brat) is cell type specific. Thus, Pum-dependent regulation of INa in motoneurons requires both Nanos and Brat, whereas regulation in other neuronal types seemingly requires only Nanos but not Brat. We also show that Pum is able to reduce the level of nanos mRNA and as such identify a potential negative-feedback mechanism to protect neurons from overactivity of Pum. Finally, we show coupling between INa (para) and IK (Shal) such that Pum-mediated change in para results in a compensatory change in Shal. The identification of para as a direct target of Pum represents the first ion channel to be translationally regulated by this repressor and the location of the binding motif is the first example in an ORF rather than in the canonical 3'-untranslated region of target transcripts

    Twitchy, the Drosophila orthologue of the ciliary gating protein FBF1/dyf-19, is required for coordinated locomotion and male fertility

    Get PDF
    Primary cilia are compartmentalised from the rest of the cell by a ciliary gate comprising transition fibres and a transition zone. The ciliary gate allows the selective import and export of molecules such as transmembrane receptors and transport proteins. These are required for the assembly of the cilium, its function as a sensory and signalling centre and to maintain its distinctive composition. Certain motile cilia can also form within the cytosol as exemplified by human and Drosophila sperm. The role of transition fibre proteins has not been well described in the cytoplasmic cilia. Drosophila have both compartmentalised primary cilia, in sensory neurons, and sperm flagella that form within the cytosol. Here, we describe phenotypes for twitchy the Drosophila orthologue of a transition fibre protein, mammalian FBF1/C. elegans dyf-19. Loss-of-function mutants in twitchy are adult lethal and display a severely uncoordinated phenotype. Twitchy flies are too uncoordinated to mate but RNAi-mediated loss of twitchy specifically within the male germline results in coordinated but infertile adults. Examination of sperm from twitchy RNAi-knockdown flies shows that the flagellar axoneme forms, elongates and is post-translationally modified by polyglycylation but the production of motile sperm is impaired. These results indicate that twitchy is required for the function of both sensory cilia that are compartmentalised from the rest of the cell and sperm flagella that are formed within the cytosol of the cell. Twitchy is therefore likely to function as part of a molecular gate in sensory neurons but may have a distinct function in sperm cells.ISSN:2046-639

    The homeobox transcription factor Even-skipped regulates acquisition of electrical properties in Drosophila neurons.

    Get PDF
    BACKGROUND: While developmental processes such as axon pathfinding and synapse formation have been characterized in detail, comparatively less is known of the intrinsic developmental mechanisms that regulate transcription of ion channel genes in embryonic neurons. Early decisions, including motoneuron axon targeting, are orchestrated by a cohort of transcription factors that act together in a combinatorial manner. These transcription factors include Even-skipped (Eve), islet and Lim3. The perdurance of these factors in late embryonic neurons is, however, indicative that they might also regulate additional aspects of neuron development, including the acquisition of electrical properties. RESULTS: To test the hypothesis that a combinatorial code transcription factor is also able to influence the acquisition of electrical properties in embryonic neurons we utilized the molecular genetics of Drosophila to manipulate the expression of Eve in identified motoneurons. We show that increasing expression of this transcription factor, in two Eve-positive motoneurons (aCC and RP2), is indeed sufficient to affect the electrical properties of these neurons in early first instar larvae. Specifically, we observed a decrease in both the fast K+ conductance (IKfast) and amplitude of quantal cholinergic synaptic input. We used charybdotoxin to pharmacologically separate the individual components of IKfast to show that increased Eve specifically down regulates the Slowpoke (a BK Ca2+-gated potassium channel), but not Shal, component of this current. Identification of target genes for Eve, using DNA adenine methyltransferase identification, revealed strong binding sites in slowpoke and nAcRalpha-96Aa (a nicotinic acetylcholine receptor subunit). Verification using real-time PCR shows that pan-neuronal expression of eve is sufficient to repress transcripts for both slo and nAcRalpha-96Aa. CONCLUSION: Taken together, our findings demonstrate, for the first time, that Eve is sufficient to regulate both voltage- and ligand-gated currents in motoneurons, extending its known repertoire of action beyond its already characterized role in axon guidance. Our data are also consistent with a common developmental program that utilizes a defined set of transcription factors to determine both morphological and functional neuronal properties

    The global energy balance of Titan

    Get PDF
    The global energy budget of planets and their moons is a critical factor to influence the climate change on these objects. Here we report the first measurement of the global emitted power of Titan. Long-term (2004–2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 ± 0.01) × 10^(14) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 6.0%
    corecore