153 research outputs found

    The Impact of Medicare's Prospective Payment System on Psychiatric Patients Treated in Scatterbeds

    Get PDF
    Medicare's Prospective Payment System (PPS) for hospitals was phased-in during the 1884 Federal Fiscal Year. While many providers of psychiatric inpatient care were exempted from PPS patients treated in general hospital beds outside of psychiatric units (scatterbeds) were not. This allows for an initial assessment of the impact of PPS on psychiatric patients. We use a single equation model of hospital length of stay to estimate the impact of PPS. We allow for the possibility of both anticipating behavior and slow adjustment to the new payment scheme. The results indicate a substantial response to PPS over the first year of implementation. The estimated response includes sizable anticipatory and slow adjustment components. The findings suggest that policy discussions may be weighted too heavily in the direction of concern over hospital financial status given the ability of hospitals to change their behavior.

    Examining the restorative effects of casual video games

    Get PDF
    Individuals who work in highly stressful jobs (e.g. doctors, soldiers) struggle with the daily impact of stress-related cognitive fatigue. High-pressured job tasks and worry for job security can produce an unstable internal environment for the individual, where stress and cognitive workload can intensify. Stress-induced fatigue generates a multitude of overwhelming problems for the individual. Due to society’s growing demand of productivity and efficiency, there is an essential need for finding a cost effective way to reduce cognitive fatigue and stress for everyone. This study analyzed and compared three relaxation methods (break, meditation, & game) to determine the effectiveness of brief casual video game exposure as a method to reduce stress increase mood, and restore cognitive resources. Taking a short break or engaging in guided relaxation exercises are well-known methods for reducing stress and improving mood, but can be impractical, less motivating, and time-consuming in a high stress related job, where time-efficiency and productivity are critical. Casual Video Games (CVGs) may present an optimum opportunity to be a preferred method to reduce stress and improve mood, due to their short time requirements, better mobility, and convenience. Three experiments were conducted to examine the hypothesis that CVGs could be an efficacious method of reducing stress, improving mood and restoring fatigue induced cognitive decrements. Across all three experiments, the guided medication technique was found to be another effective method to reduce stress and improve mood; however, this method was found to be less effective than the casual video game condition, the break was found to be the least effective method of reducing stress and improving mood. However, none of the methods were able to improve cognitive functioning. Overall, the results indicated that briefly playing a casual video game (\u3c 10 minutes) can improve mood (increased positive affect & reduced negative affect), reduce stress with increased task engagement. Widespread use of Casual Video Games has the potential of improving employee productivity and efficiency and therefore improving a company’s profitability. Future research is needed to determine which aspects of casual video games may increase or reduce these effects

    Agro-Ecological Class Stability Decreases in Response to Climate Change Projections for the Pacific Northwest, USA

    Get PDF
    Climate change will impact bioclimatic drivers that regulate the geospatial distribution of dryland agro-ecological classes (AECs). Characterizing the geospatial relationship between present AECs and their bioclimatic controls will provide insights into potential future shifts in AECs as climate changes. The major objectives of this study are to quantify empirical relationships between bioclimatic variables and the current geospatial distribution of six dryland AECs of the inland Pacific Northwest (iPNW) of the United States; and apply bioclimatic projections from downscaled climate models to assess geospatial shifts of AECs under current production practices. Two Random Forest variable selection algorithms, VarSelRF and Boruta, were used to identify relevant bioclimatic variables. Three bioclimatic variables were identified by VarSelRF as useful for predictive Random Forest modeling of six AECs: (1) Holdridge evapotranspiration index; (2) spring precipitation (March, April, and May); and (3) precipitation of the warmest 4-month season (June, July, August, and September). Super-imposing future climate scenarios onto current agricultural production systems resulted in significant geospatial shifts in AECs. The Random Forest model projected a 58 and 63% increase in area under dynamic annual crop-fallow-transition (AC-T) and dynamic grain-fallow (GF) AECs, respectively. By contrast, a 46% decrease in area was projected for stable AC-T and dynamic annual crop (AC) AECs across all future time periods for Representative Concentration Pathway (RCP) 8.5. For the same scenarios, the stable AC and GF AECs showed the least declines in area (8 and 13%, respectively), compared to other AECs. Future spatial shifts from stable to dynamic AECs, particularly to dynamic AC-T and dynamic GF AECs would result in more use of fallow, a greater hazard for soil erosion, greater cropping system uncertainty, and potentially less cropping system flexibility. These projections are counter to cropping system goals of increasing intensification, diversification, and productivity

    Gene drives for schistosomiasis transmission control.

    Get PDF
    Schistosomiasis is one of the most important and widespread neglected tropical diseases (NTD), with over 200 million people infected in more than 70 countries; the disease has nearly 800 million people at risk in endemic areas. Although mass drug administration is a cost-effective approach to reduce occurrence, extent, and severity of the disease, it does not provide protection to subsequent reinfection. Interventions that target the parasites' intermediate snail hosts are a crucial part of the integrated strategy required to move toward disease elimination. The recent revolution in gene drive technology naturally leads to questions about whether gene drives could be used to efficiently spread schistosome resistance traits in a population of snails and whether gene drives have the potential to contribute to reduced disease transmission in the long run. Responsible implementation of gene drives will require solutions to complex challenges spanning multiple disciplines, from biology to policy. This Review Article presents collected perspectives from practitioners of global health, genome engineering, epidemiology, and snail/schistosome biology and outlines strategies for responsible gene drive technology development, impact measurements of gene drives for schistosomiasis control, and gene drive governance. Success in this arena is a function of many factors, including gene-editing specificity and efficiency, the level of resistance conferred by the gene drive, how fast gene drives may spread in a metapopulation over a complex landscape, ecological sustainability, social equity, and, ultimately, the reduction of infection prevalence in humans. With combined efforts from across the broad global health community, gene drives for schistosomiasis control could fortify our defenses against this devastating disease in the future

    Effects of Coleus Forskohlii Supplementation on Body Composition and Hematological Profiles in Mildly Overweight Women

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>This study investigated the effects of <it>Coleus Forskohlii </it>(CF) on body composition, and determined the safety and efficacy of supplementation.</p> <p>Methods</p> <p>In a double blind and randomized manner, 23 females supplemented their diet with ForsLean™ (250 mg of 10% CF extract, (n = 7) or a placebo [P] (n = 12) two times per day for 12-wks. Body composition (DEXA), body weight, and psychometric instruments were obtained at 0, 4, 8 & 12 weeks of supplementation. Fasting blood samples and dietary records (4-d) were obtained at 0 and 12-wks. Side effects were recorded on a weekly basis. Data were analyzed by repeated measures ANOVA and are presented as mean changes from baseline for the CF and placebo groups, respectively.</p> <p>Results</p> <p>No significant differences were observed in caloric or macronutrient intake. CF tended to mitigate gains in body mass (-0.7 ± 1.8, 1.0 ± 2.5 kg, p = 0.10) and scanned mass (-0.2 ± 1.3, 1.7 ± 2.9 kg, p = 0.08) with no significant differences in fat mass (-0.2 ± 0.7, 1.1 ± 2.3 kg, p = 0.16), fat free mass (-0.1 ± 1.3, 0.6 ± 1.2 kg, p = 0.21), or body fat (-0.2 ± 1.0, 0.4 ± 1.4%, p = 0.40). Subjects in the CF group tended to report less fatigue (p = 0.07), hunger (p = 0.02), and fullness (p = 0.04). No clinically significant interactions were seen in metabolic markers, blood lipids, muscle and liver enzymes, electrolytes, red cells, white cells, hormones (insulin, TSH, T3, and T4), heart rate, blood pressure, or weekly reports of side effects.</p> <p>Conclusion</p> <p>Results suggest that CF does not appear to promote weight loss but may help mitigate weight gain in overweight females with apparently no clinically significant side effects.</p

    Risk Governance Guidelines for Unconventional Gas Development

    Get PDF
    Based on concerns that unconventional gas development is occurring despite much uncertainty about its potential impacts on the environment, climate, economy and society the IRGC offers recommendations relating to assessing and managing risks involved in the development of this resource. The goal is that by applying these recommended actions, risks will be significantly reduced while the benefits of utilizing this newly available resource will be strengthened

    CSAR Benchmark Exercise of 2010: Selection of the Protein–Ligand Complexes

    Get PDF
    ABSTRACT: A major goal in drug design is the improvement of computational methods for docking and scoring. The Community Structure Activity Resource (CSAR) aims to collect available data from industry and academia which may be used for this purpose (www.csardock.org). Also, CSAR is charged with organizing community-wide exercises based on the collected data. The first of these exercises was aimed to gauge the overall state of docking and scoring, using a large and diverse data set of protein ligand complexes. Participants were asked to calculate the affinity of the complexes as provided and then recalculate with changes which may improve their specific method. This first data set was selected from existing PDB entries which had binding data (Kd or Ki) in Binding MOAD, augmented with entries from PDBbind. The final data set contains 343 diverse protein ligand complexes and spans 14 pKd. Sixteen proteins have three or more complexes in the data set, from which a user could start an inspection of congeneric series. Inherent experimental error limits the possible correlation between scores and measured affinity; R 2 is limited to ∼0.9 when fitting to the data set without over parametrizing. R 2 is limited to ∼0.8 when scoring the data set with a method trained on outside data. The details of how the data set was initially selected, and the process by which it matured t

    Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

    Get PDF
    Background: As the oceans simultaneously warm, acidify and increase in P-CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming.Methodology/Principal Findings: We examined the interactive effects of near-future ocean warming and increased acidification/P-CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P-CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P-CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C) stimulated growth, producing significantly bigger larvae across all pH/P-CO2 treatments up to a thermal threshold (+6 degrees C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth.Conclusions and Significance: This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P-CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations

    Emerging Anthropogenic Influences on the Southcentral Alaska Temperature and Precipitation Extremes and Related Fires in 2019

    Get PDF
    The late-season extreme fire activity in Southcentral Alaska during 2019 was highly unusual and consequential. Firefighting operations had to be extended by a month in 2019 due to the extreme conditions of hot summer temperature and prolonged drought. The ongoing fires created poor air quality in the region containing most of Alaska’s population, leading to substantial impacts to public health. Suppression costs totaled over $70 million for Southcentral Alaska. This study’s main goals are to place the 2019 season into historical context, provide an attribution analysis, and assess future changes in wildfire risk in the region. The primary tools are meteorological observations and climate model simulations from the NCAR CESM Large Ensemble (LENS). The 2019 fire season in Southcentral Alaska included the hottest and driest June–August season over the 1979–2019 period. The LENS simulation analysis suggests that the anthropogenic signal of increased fire risk had not yet emerged in 2019 because of the CESM’s internal variability, but that the anthropogenic signal will emerge by the 2040–2080 period. The effect of warming temperatures dominates the effect of enhanced precipitation in the trend towards increased fire risk.The National Science Foundation (#OIA-1753748), the State of Alaska, the United States Geological Survey (G17AC00363), and the Alaska Climate Adaptation Science Center (G17AC00213) provided support for this study. NOAA supported this work through grants #NA16OAR4310162 (R.T., J.E.W., A.Y.) and #NA16OAR4310142 (U.S.B., P.A.B.)Ye
    corecore