396 research outputs found

    Fatal spirorchiidosis in European pond turtles (Emys orbicularis) in Switzerland.

    Get PDF
    Infections with intravascular digenean trematodes of the Spirorchiidae family (spirorchiidoses) are of great conservation concern both in marine and freshwater turtles due to their pathogenic potential. Between 2014 and 2021, Spirorchis sp. infections associated with granulomatous inflammation and sudden death were detected in European pond turtles (Emys orbicularis) from three conservation breeding facilities in Switzerland. Blood fluke eggs associated with lesions were found in the intestine, spleen, testis, skeletal musculature, heart, kidneys, stomach, pancreas, liver, lung, and meninges from nine pond turtles submitted for necropsy and in the intestinal content from five of these animals. Two novel polymerase chain reactions (PCRs) targeting the 28S ribosomal RNA gene and the ITS2 region and subsequent sequencing revealed 100% nucleotide identity with a Spirorchis sp. previously isolated from an Escambia map turtle (Graptemys ernsti) in the USA. Our findings suggest a spill-over event secondary to direct or indirect contact with invasive North American turtle species in Switzerland. We describe the clinical, haematological, ultrasonographical, endoscopical, parasitological, pathological, and molecular findings associated with spirorchiid blood fluke infections of the Spirorchis genus in E. orbicularis, as well as the biosecurity measures that were developed to prevent the spread of this parasite among breeding and highly endangered free-ranging E. orbicularis populations in Switzerland

    Fatal spirorchiidosis in European pond turtles (Emys orbicularis) in Switzerland

    Full text link
    Infections with intravascular digenean trematodes of the Spirorchiidae family (spirorchiidoses) are of great conservation concern both in marine and freshwater turtles due to their pathogenic potential. Between 2014 and 2021, Spirorchis sp. infections associated with granulomatous inflammation and sudden death were detected in European pond turtles (Emys orbicularis) from three conservation breeding facilities in Switzerland. Blood fluke eggs associated with lesions were found in the intestine, spleen, testis, skeletal musculature, heart, kidneys, stomach, pancreas, liver, lung, and meninges from nine pond turtles submitted for necropsy and in the intestinal content from five of these animals. Two novel polymerase chain reactions (PCRs) targeting the 28S ribosomal RNA gene and the ITS2 region and subsequent sequencing revealed 100% nucleotide identity with a Spirorchis sp. previously isolated from an Escambia map turtle (Graptemys ernsti) in the USA. Our findings suggest a spill-over event secondary to direct or indirect contact with invasive North American turtle species in Switzerland. We describe the clinical, haematological, ultrasonographical, endoscopical, parasitological, pathological, and molecular findings associated with spirorchiid blood fluke infections of the Spirorchis genus in E. orbicularis, as well as the biosecurity measures that were developed to prevent the spread of this parasite among breeding and highly endangered free-ranging E. orbicularis populations in Switzerland

    Self-Cleaning Surfaces Realized by Biologically Sized Magnetic Artificial Cilia

    Get PDF
    Magnetic artificial cilia (MAC) are small actuators inspired by biological cilia found in nature. In microfluidic chips, MAC can generate flow and remove microparticles, with applications in anti-fouling. However, the MAC used for anti-fouling in the current literature has dimensions of several hundred micrometers in length, which limits the application to relatively large length scales. Here, biologically-sized magnetic artificial cilia (b-MAC) which are only 45 micrometers long and that are randomly distributed on the surface, are used to remove microparticles. It is shown that microparticles with sizes ranging from 5 to 40 µm can be removed efficiently and the final cleanness ranges from 69% to 100%, with the highest cleanness for the highest actuation frequency applied (40 Hz). The lowest cleanness is obtained for microparticles with a size equal to the average pitch between the b-MAC. The randomness in cilia distribution appears to have a positive effect on cleanliness, compared with the authors’ earlier work using a regular cilia array. The demonstrated self-cleaning by the b-MAC constitutes an essential step toward efficient self-cleaning surfaces for real-life application in miniaturized microfluidic devices, such as lab-on-a-chip or organ-on-a-chip devices, as well as for preventing fouling of submerged surfaces such as marine sensors.</p

    Self-Cleaning Surfaces Realized by Biologically Sized Magnetic Artificial Cilia

    Get PDF
    Magnetic artificial cilia (MAC) are small actuators inspired by biological cilia found in nature. In microfluidic chips, MAC can generate flow and remove microparticles, with applications in anti-fouling. However, the MAC used for anti-fouling in the current literature has dimensions of several hundred micrometers in length, which limits the application to relatively large length scales. Here, biologically-sized magnetic artificial cilia (b-MAC) which are only 45 micrometers long and that are randomly distributed on the surface, are used to remove microparticles. It is shown that microparticles with sizes ranging from 5 to 40 µm can be removed efficiently and the final cleanness ranges from 69% to 100%, with the highest cleanness for the highest actuation frequency applied (40 Hz). The lowest cleanness is obtained for microparticles with a size equal to the average pitch between the b-MAC. The randomness in cilia distribution appears to have a positive effect on cleanliness, compared with the authors’ earlier work using a regular cilia array. The demonstrated self-cleaning by the b-MAC constitutes an essential step toward efficient self-cleaning surfaces for real-life application in miniaturized microfluidic devices, such as lab-on-a-chip or organ-on-a-chip devices, as well as for preventing fouling of submerged surfaces such as marine sensors.</p

    Campylobacter jejuni 11168H exposed to penicillin forms persister cells and cells with altered redox protein activity

    Get PDF
    The formation of persister cells is one mechanism by which bacteria can survive exposure to environmental stresses. We show that Campylobacter jejuni 11168H forms persister cells at a frequency of 10−3 after exposure to 100 × MIC of penicillin G for 24 h. Staining the cell population with a redox sensitive fluorescent dye revealed that penicillin G treatment resulted in the appearance of a population of cells with increased fluorescence. We present evidence, to show this could be a consequence of increased redox protein activity in, or associated with, the electron transport chain. These data suggest that a population of penicillin G treated C. jejuni cells could undergo a remodeling of the electron transport chain in order to moderate membrane hyperpolarization and intracellular alkalization; thus reducing the antibiotic efficacy and potentially assisting in persister cell formation

    Detailed Clinical and Psychological Phenotype of the X-linked HNRNPH2-Related Neurodevelopmental Disorder

    Get PDF
    Objective: To expand the clinical phenotype of the X-linked HNRNPH2-related neurodevelopmental disorder in 33 individuals. Methods: Participants were diagnosed with pathogenic or likely pathogenic variants in HNRNPH2 using American College of Medical Genetics and Genomics/Association of Molecular Pathology criteria, largely identified via clinical exome sequencing. Genetic reports were reviewed. Clinical data were collected by retrospective chart review and caregiver report including standardized parent report measures. Results: We expand our clinical characterization of HNRNPH2-related disorders to include 33 individuals, aged 2-38 years, both females and males, with 11 different de novo missense variants, most within the nuclear localization signal. The major features of the phenotype include developmental delay/intellectual disability, severe language impairment, motor problems, growth, and musculoskeletal disturbances. Minor features include dysmorphic features, epilepsy, neuropsychiatric diagnoses such as autism spectrum disorder, and cortical visual impairment. Although rare, we report early stroke and premature death with this condition. Conclusions: The spectrum of X-linked HNRNPH2-related disorders continues to expand as the allelic spectrum and identification of affected males increases.Grant support for L. Boyle provided by TL1TR001875.info:eu-repo/semantics/publishedVersio

    Classifying the unclassifiable—a Delphi study to reach consensus on the fibrotic nature of diseases

    Get PDF
    BACKGROUND: Traditionally, clinical research has focused on individual fibrotic diseases or fibrosis in a particular organ. However, it is possible for people to have multiple fibrotic diseases. While multi-organ fibrosis may suggest shared pathogenic mechanisms, yet there is no consensus on what constitutes a fibrotic disease and therefore fibrotic multimorbidity. AIM: A Delphi study was performed to reach consensus on which diseases may be described as fibrotic. METHODS: Participants were asked to rate a list of diseases, sub-grouped according to eight body regions, as 'fibrotic manifestation always present', 'can develop fibrotic manifestations', 'associated with fibrotic manifestations' or 'not fibrotic nor associated'. Classifications of 'fibrotic manifestation always present' and 'can develop fibrotic manifestations' were merged and termed 'fibrotic'. Clinical consensus was defined according to the interquartile range, having met a minimum number of responses. Clinical agreement was used for classification where diseases did not meet the minimum number of responses (required for consensus measure), were only classified if there was 100% consensus on disease classification. RESULTS: After consulting experts, searching the literature and coding dictionaries, a total of 323 non-overlapping diseases which might be considered fibrotic were identified; 92 clinical specialists responded to the first round of the survey. Over three survey rounds, 240 diseases were categorized as fibrotic via clinical consensus and 25 additional diseases through clinical agreement. CONCLUSION: Using a robust methodology, an extensive list of diseases was classified. The findings lay the foundations for studies estimating the burden of fibrotic multimorbidity, as well as investigating shared mechanisms and therapies
    corecore