2,229 research outputs found

    A novel method of combining blood oxygenation and blood flow sensitive magnetic resonance imaging techniques to measure the cerebral blood flow and oxygen metabolism responses to an unknown neural stimulus.

    Get PDF
    Simultaneous implementation of magnetic resonance imaging methods for Arterial Spin Labeling (ASL) and Blood Oxygenation Level Dependent (BOLD) imaging makes it possible to quantitatively measure the changes in cerebral blood flow (CBF) and cerebral oxygen metabolism (CMRO(2)) that occur in response to neural stimuli. To date, however, the range of neural stimuli amenable to quantitative analysis is limited to those that may be presented in a simple block or event related design such that measurements may be repeated and averaged to improve precision. Here we examined the feasibility of using the relationship between cerebral blood flow and the BOLD signal to improve dynamic estimates of blood flow fluctuations as well as to estimate metabolic-hemodynamic coupling under conditions where a stimulus pattern is unknown. We found that by combining the information contained in simultaneously acquired BOLD and ASL signals through a method we term BOLD Constrained Perfusion (BCP) estimation, we could significantly improve the precision of our estimates of the hemodynamic response to a visual stimulus and, under the conditions of a calibrated BOLD experiment, accurately determine the ratio of the oxygen metabolic response to the hemodynamic response. Importantly we were able to accomplish this without utilizing a priori knowledge of the temporal nature of the neural stimulus, suggesting that BOLD Constrained Perfusion estimation may make it feasible to quantitatively study the cerebral metabolic and hemodynamic responses to more natural stimuli that cannot be easily repeated or averaged

    The importance of recent infection with Mycobacterium tuberculosis in an area with high HIV prevalence: a long-term molecular epidemiological study in Northern Malawi.

    No full text
    BACKGROUND: The proportion of cases of tuberculosis due to recent infection can be estimated in long-term population-based studies using molecular techniques. Here, we present what is, to our knowledge, the first such study in an area with high human immunodeficiency virus (HIV) prevalence. METHODS: All patients with tuberculosis in Karonga District, Malawi, were interviewed. Isolates were genotyped using restriction-fragment-length polymorphism (RFLP) patterns. Strains were considered to be "clustered" if at least 1 other patient had an isolate with an identical pattern. RESULTS: RFLP results were available from 83% of culture-positive patients from late 1995 to early 2003. When strains with <5 bands were excluded, 72% (682/948) were clustered. Maximum clustering was reached using a 4-year window, with an estimated two-thirds of cases due to recent transmission. The proportion clustered decreased with age and varied by area of residence. In older adults, clustering was less common in men and more common in patients who were HIV positive (adjusted odds ratio, 5.1 [95% confidence interval, 2.1-12.6]). CONCLUSIONS: The proportion clustered found in the present study was among the highest in the world, suggesting high rates of recent transmission. The association with HIV infection in older adults may suggest that HIV has a greater impact on disease caused by recent transmission than on that caused by reactivation

    Calcium carbonate dissolution from the laboratory to the ocean: kinetics and mechanism

    Get PDF
    The ultimate fate, over the course of millennia, of nearly all of the carbon dioxide formed by humankind is for it to react with calcium carbonate in the world's oceans. Although, this reaction is of global relevance, aspects of the calcite dissolution reaction remain poorly described with apparent contradictions present throughout the expansive literature. In this perspective we aim to evidence how a lack of appreciation of the role of mass-transport may have hampered developments in this area. These insights have important implications for both idealised experiments performed under laboratory conditions and for the measurement and modelling of oceanic calcite sediment dissolution

    Genetic susceptibility to psoriasis: an emerging picture

    Get PDF
    Psoriasis is recognized as a complex disease for which multiple genetic and non-genetic factors influence susceptibility. The major susceptibility locus resides in the MHC class I region and, until relatively recently, evidence for non-MHC loci was inconsistent. Like many common diseases, knowledge of the genetic basis of this condition has been advanced dramatically in recent times with the advent of genome-wide association studies using single nucleotide polymorphisms. Here, we give an overview of current knowledge of genetic risk factors for psoriasis and consider emerging studies that may further add to our understanding of the genetic basis of the disease

    AI facilitated fluoro-electrochemical phytoplankton classification

    Get PDF
    Marine phytoplankton is extremely diverse. Counting and characterising phytoplankton is essential for understanding climate change and ocean health not least since phytoplankton extensively biomineralize carbon dioxide whilst generating 50% of the planet's oxygen. We report the use of fluoro-electrochemical microscopy to distinguish different taxonomies of phytoplankton by the quenching of their chlorophyll-a fluorescence using chemical species oxidatively electrogenerated in situin seawater. The rate of chlorophyll-a quenching of each cell is characteristic of the species-specific structural composition and cellular content. But with increasing diversity and extent of phytoplankton species under study, human interpretation and distinction of the resulting fluorescence transients becomes increasingly and prohibitively difficult. Thus, we further report a neural network to analyse these fluorescence transients, with an accuracy >95% classifying 29 phytoplankton strains to their taxonomic orders. This method transcends the state-of-the-art. The success of the fluoro-electrochemical microscopy combined with AI provides a novel, flexible and highly granular solution to phytoplankton classification and is adaptable for autonomous ocean monitoring

    Detection of Lyman-alpha Emitting Galaxies at Redshift z=4.55

    Full text link
    Studies of the formation and early history of galaxies have been hampered by the difficulties inherent in detecting faint galaxy populations at high redshift. As a consequence, observations at the highest redshifts (3.5 < z < 5) have been restricted to objects that are intrinsically bright. These include quasars, radio galaxies, and some Ly alpha-emitting objects that are very close to (within ~10 kpc) -- and appear to be physically associated with -- quasars. But the extremely energetic processes which make these objects easy to detect also make them unrepresentative of normal (field) galaxies. Here we report the discovery using Keck spectroscopic observations of two Ly alpha-emitting galaxies at redshift z = 4.55, which are sufficiently far from the nearest quasar (~700 kpc) that radiation from the quasar is unlikely to provide the excitation source of the Ly alpha emission. Instead, these galaxies appear to be undergoing their first burst of star formation, at a time when the Universe was less than one billion years old.Comment: 8 pages, 1 landscape table, and 3 PostScript figures. Uses aaspp4.sty, flushrt.sty, aj_pt4.sty, overcite.sty (style macros available from xxx.lanl.gov) Figure 1 is bitmapped to 100 dpi. The original PostScript version of Fig. 1 is available via anonymous ftp to ftp://hubble.ifa.hawaii.edu/pub/preprints To appear in Natur

    Calcifying coccolithophore: an evolutionary advantage against extracellular oxidative damage

    Get PDF
    The evolutionary advantages afforded by phytoplankton calcification remain enigmatic. In this work, fluoroelectrochemical experiments reveal that the presence of a CaCO3 shell of a naturally calcifying coccolithophore, Coccolithus braarudii, offers protection against extracellular oxidants as measured by the time required for the switch-off in their chlorophyll signal, compared to the deshelled equivalents, suggesting the shift toward calcification offers some advantages for survival in the surface of radical-rich seawater

    A novel fluoro-electrochemical technique for classifying diverse marine nanophytoplankton

    Get PDF
    To broaden our understanding of pelagic ecosystem responses to environmental change, it is essential that we improve the spatiotemporal resolution of in situ monitoring of phytoplankton communities. A key challenge for existing methods is in classifying and quantifying cells within the nanophytoplankton size range (2–20 μm). This is particularly difficult when there are similarities in morphology, making visual differentiation difficult for both trained taxonomists and machine learning-based approaches. Here we present a rapid fluoro-electrochemical technique for classifying nanophytoplankton, and using a library of 52 diverse strains of nanophytoplankton we assess the accuracy of this technique based on two measurements at the individual level: charge required to reduce per cell chlorophyll a fluorescence by 50% and cell radius. We demonstrate a high degree of accuracy overall (92%) in categorizing cells belonging to widely recognized key functional groups; however, this is reduced when we consider the broader diversity of “nano-phytoflagellates'.” Notably, we observe that some groups, for example, calcifying Isochrysidales, have much greater resilience to electrochemically driven oxidative conditions relative to others of a similar size, making them more easily categorized by the technique. The findings of this study present a promising step forward in advancing our toolkit for monitoring phytoplankton communities. We highlight that, for improved categorization accuracy, future iterations of the method can be enhanced by measuring additional predictor variables with minimal adjustments to the set-up. In doing so, we foresee this technique being highly applicable, and potentially invaluable, for in situ classification and enumeration of the nanophytoplankton size fraction

    Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.Thiswork was supported by the Natural Environment ResearchCouncil (grant no. NE/G017 24/1), the Czech Science Fou nda-tion (grant no. P501/12/G090), the AVCR (grant no.RVO:60077344) and a Beatriu de Pinos postdoctoral fellowshipto J.P. (grant no. 2011-A-00292; Catalan Government-E.U. 7thF.P.)
    corecore