19 research outputs found

    Plasma Membrane Polarity and Compartmentalization Are Established before Cellularization in the Fly Embryo

    Get PDF
    SummaryPatterning in the Drosophila embryo requires local activation and dynamics of proteins in the plasma membrane (PM). We used in vivo fluorescence imaging to characterize the organization and diffusional properties of the PM in the early embryonic syncytium. Before cellularization, the PM is polarized into discrete domains having epithelial-like characteristics. One domain resides above individual nuclei and has apical-like characteristics, while the other domain is lateral to nuclei and contains markers associated with basolateral membranes and junctions. Pulse-chase photoconversion experiments show that molecules can diffuse within each domain but do not exchange between PM regions above adjacent nuclei. Drug-induced F-actin depolymerization disrupted both the apicobasal-like polarity and the diffusion barriers within the syncytial PM. These events correlated with perturbations in the spatial pattern of dorsoventral Toll signaling. We propose that epithelial-like properties and an intact F-actin network compartmentalize the PM and shape morphogen gradients in the syncytial embryo

    Syndapin bridges the membrane-cytoskeleton divide during furrow extension

    No full text
    BAR domain proteins can regulate ‘membrane reservoirs’ that provide surface area and buffer membrane tension. Syndapin is an F-BAR and SH3 domain containing protein involved in cytoskeletal remodelling and endocytosis. The Syndapin F-BAR domain is uniquely versatile compared to others in the family and can bend phospholipid membranes into tubules of various diameters and directly bind actin. The Syndapin SH3 domain can also interact with actin remodelling proteins and modulate cytoskeletal contractility. Pseudocleavage furrow extension in the syncytial division cycles of Drosophila embryos requires the homeostatic control of conserved processes that control plasma membrane tension and actin contractility. We find that Syndapin plays an important role in promoting pseudocleavage furrow extension. We propose a model involving roles for Syndapin in membrane dynamics and direct or indirect effect on the cytoskeleton to explain how it affects pseudocleavage furrow growth, independent of its role in endocytosis

    Dynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the syncytial Drosophila embryo

    No full text
    The successive nuclear division cycles in the syncytial Drosophila embryo are accompanied by ingression and regression of plasma membrane furrows, which surround individual nuclei at the embryo periphery, playing a central role in embryo compartmentalization prior to cellularization. Here, we demonstrate that cell cycle changes in dynamin localization and activity at the plasma membrane (PM) regulate metaphase furrow formation and PM organization in the syncytial embryo. Dynamin was localized on short PM furrows during interphase, mediating endocytosis of PM components. Dynamin redistributed off ingressed PM furrows in metaphase, correlating with stabilized PM components and the associated actin regulatory machinery on long furrows. Acute inhibition of dynamin in the temperature sensitive shibire mutant embryo resulted in morphogenetic consequences in the syncytial division cycle. These included inhibition of metaphase furrow ingression, randomization of proteins normally polarized to intercap PM and disruption of the diffusion barrier separating PM domains above nuclei. Based on these findings, we propose that cell cycle changes in dynamin orchestrate recruitment of actin regulatory machinery for PM furrow dynamics during the early mitotic cycles in the Drosophila embryo

    Cells within a cell <subtitle>insights into cellular architecture and polarization from the organization of the early fly embryo</subtitle>

    No full text
    Drosophila embryogenesis begins with 13 rapid nuclear divisions within a common cytoplasm. These divisions produce ~6,000 nuclei that, during the next division cycle, become encased in plasma membrane (PM) and generate the primary embryonic epithelium in the process known as cellularization. Despite the absence of PM boundaries between syncytial nuclei, the secretory membrane system is organized in functionally compartmentalized units around individual nuclei.1 We have recently used in vivo fluorescence imaging to characterize the dynamics of proteins in the PM of the embryonic syncytium. These studies revealed that the PM is polarized already before cellularization. One PM region resides above individual nuclei and has apical-like features, while PM regions lateral to nuclei have basolateral characteristics. Optical highlighting experiments showed that membrane components do not exchange between PM regions that reside above adjacent nuclei. An intact F-actin network was shown to be important for both the PM apicobasal-like polarity and the diffusion barriers within the syncytial PM. Our findings, as well as their possible implications, are further discussed in this Addendum

    F-BAR domain protein Syndapin regulates actomyosin dynamics during apical cap remodeling in syncytial Drosophila embryos

    No full text
    International audienceBranched actin networks driven by Arp2/3 interact with actomyosin filaments in processes such as cell migration. Similar interactions occur in the syncytial Drosophila blastoderm embryo where expansion of apical caps by Arp2/3-driven actin polymerization occurs in interphase, and cap buckling at contact edges by Myosin II to form furrows takes place in metaphase. Here, we study the role of Syndapin (Synd), an F-BAR domain-containing protein, in apical cap remodeling prior to furrow extension. We found that depletion of synd resulted in larger apical caps. Super-resolution and TIRF microscopy showed that control embryos had long apical actin protrusions in caps during interphase and short protrusions during metaphase, whereas synd depletion led to formation of sustained long protrusions, even during metaphase. Loss of Arp2/3 function in synd mutants partly reverted defects in apical cap expansion and protrusion remodeling. Myosin II levels were decreased in synd mutants, an observation consistent with the expanded cap phenotype previously reported for Myosin II mutant embryos. We propose that Synd function limits branching activity during cap expansion and affects Myosin II distribution in order to bring about a transition in actin remodeling activity from apical cap expansion to lateral furrow extension

    Mitochondrial morphology and activity regulate furrow ingression and contractile ring dynamics in Drosophila cellularization

    No full text
    International audienceMitochondria are maternally inherited in many organisms. Mitochondrial morphology and activity regulation is essential for cell survival, differentiation and migration. An analysis of mitochondrial dynamics and function in morphogenetic events in early metazoan embryogenesis has not been carried out. In our study we find a crucial role of mitochondrial morphology regulation in cell formation in Drosophila embryogenesis. We find that mitochondria are small, fragmented and translocate apically on microtubules and distribute progressively along the cell length during cellularization. Embryos mutant for mitochondrial fission protein, Drp1, die in embryogenesis and show an accumulation of clustered mitochondria on the basal side in cellularization. Additionally, Drp1 mutant embryos contain lower levels of reactive oxygen species (ROS). ROS depletion has been previously shown to decrease Myosin II activity. Drp1 loss also leads to Myosin II depletion at the membrane furrow thereby resulting in decreased cell height and larger contractile ring area in cellularization similar to Myosin II mutants. The mitochondrial morphology and cellularization defects in Drp1 mutants are suppressed by reducing mitochondrial fusion and increasing cytoplasmic ROS in superoxide dismutase mutants. Our data show a key role for mitochondrial morphology and activity in supporting the morphogenetic events that drive cellularization in Drosophila embryos
    corecore