7,220 research outputs found

    Development of an improved membrane for a vapor diffusion water recovery process

    Get PDF
    Recovery of potable water from urine on manned space missions of extended duration was the objective of work aimed at the improvement of membrane performance for the vapor diffusion process (VDR). Kynar, Teflon, PVC, and polysulfone candidate membranes were evaluated from chemical, thermal, mechanical, and fabricating standpoints to determine their suitability for operation in the VDR pervaporation module. Pervaporation rates and other performance characteristics were determined in a breadboard pervaporator test rig. Kynar and Teflon membranes were demonstrated to be chemically stable at pervaporation temperatures in urine pretreated with chromic acid bactericide. The separation of the pervaporator and condenser modules, the use of a recirculating sweep gas to conduct pervaporate to the condenser, and the selection of a hollow fiber membrane configuration for pervaporator module design is recommended as a result of the investigation

    Stress intensity factors for an infinite plate with radial cracks emanating from an internal hole and subjected to cylindrical bending Progress report

    Get PDF
    Method for stress intensity factors for infinite plate with radial cracks emanating from internal hole and subjected to cylindrical bendin

    Detailed Abundances for the Old Population near the Galactic Center: I. Metallicity distribution of the Nuclear Star Cluster

    Get PDF
    We report the first high spectral resolution study of 17 M giants kinematically confirmed to lie within a few parsecs of the Galactic Center, using R=24,000 spectroscopy from Keck/NIRSPEC and a new linelist for the infrared K band. We consider their luminosities and kinematics, which classify these stars as members of the older stellar population and the central cluster. We find a median metallicity of =-0.16 and a large spread from approximately -0.3 to +0.3 (quartiles). We find that the highest metallicities are [Fe/H]<+0.6, with most of the stars being at or below the Solar iron abundance. The abundances and the abundance distribution strongly resembles that of the Galactic bulge rather than disk or halo; in our small sample we find no statistical evidence for a dependence of velocity dispersion on metallicity.Comment: 18 pages, 14 figures, accepted for publication in A

    Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R = 20 kpc

    Full text link
    We present spectroscopic observations of red giant branch (RGB) stars in the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10-m telescope. The three fields targeted in this study are in the M31 spheroid, outer disk, and giant southern stream. In this paper, we focus on the kinematics and chemical composition of RGB stars in the stream field located at a projected distance of R = 20 kpc from M31's center. A mix of stellar populations is found in this field. M31 RGB stars are isolated from Milky Way dwarf star contaminants using a variety of spectral and photometric diagnostics. The radial velocity distribution of RGB stars displays a clear bimodality -- a primary peak centered at v = -513 km/s and a secondary one at v = -417 km/s -- along with an underlying broad component that is presumably representative of the smooth spheroid of M31. Both peaks are found to be dynamically cold with intrinsic velocity dispersions of sigma(v) = 16 km/s. The mean metallicity and metallicity dispersion of stars in the two peaks is also found to be similar: [Fe/H] = -0.45 and sigma([Fe/H]) = 0.2. The observed velocity of the primary peak is consistent with that predicted by dynamical models for the stream, but there is no obvious explanation for the secondary peak. The nature of the secondary cold population is unclear: it may represent: (1) tidal debris from a satellite merger event that is superimposed on, but unrelated to, the giant southern stream; (2) a wrapped around component of the giant southern stream; (3) a warp or overdensity in M31's disk at R > 50 kpc (this component is well above the outward extrapolation of the smooth exponential disk brightness profile).Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap

    Cool White Dwarfs Revisited -- New Spectroscopy and Photometry

    Get PDF
    In this paper we present new and improved data on 38 cool white dwarfs identified by Oppenheimer et al. 2001 (OHDHS) as candidate dark halo objects. Using the high-res spectra obtained with LRIS, we measure radial velocities for 13 WDs that show an H alpha line. We show that the knowledge of RVs decreases the UV-plane velocities by only 6%. The radial velocity sample has a W-velocity dispersion of sig_W = 59 km/s--in between the values associated with the thick disk and the stellar halo. We also see indications for the presence of two populations by analyzing the velocities in the UV plane. In addition, we present CCD photometry for half of the sample, and with it recalibrate the photographic photometry of the remaining WDs. Using the new photometry in standard bands, and by applying the appropriate color-magnitude relations for H and He atmospheres, we obtain new distance estimates. New distances of the WDs that were not originally selected as halo candidates yield 13 new candidates. On average, new distances produce velocities in the UV plane that are larger by 10%, with already fast objects gaining more. Using the new data, while applying the same UV-velocity cut (94 km/s) as in OHDHS, we find a density of cool WDs of 1.7e-4 pc^-3, confirming the value of OHDHS. In addition, we derive the density as a function of the UV-velocity cutoff. The density (corrected for losses due to higher UV cuts) starts to flatten out at 150 km/s (0.4e-4 pc^-3), and is minimized (thus minimizing a possible non-halo contamination) at 190 km/s (0.3e-4 pc^-3). These densities are in a rough agreement with the estimates for the stellar halo WDs, corresponding to a factor of 1.9 and 1.4 higher values.Comment: Accepted to ApJ. New version contains some additional data. Results unchange

    Far-Ultraviolet Emission from Elliptical Galaxies at z=0.33

    Get PDF
    We present far-ultraviolet (far-UV) images of the rich galaxy cluster ZwCl1358.1+6245, taken with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope (HST). When combined with archival HST observations, our data provide a measurement of the UV-to-optical flux ratio in 8 early-type galaxies at z=0.33. Because the UV flux originates in a population of evolved, hot, horizontal branch (HB) stars, this ratio is potentially one of the most sensitive tracers of age in old populations -- it is expected to fade rapidly with lookback time. We find that the UV emission in these galaxies, at a lookback time of 3.9 Gyr, is significantly weaker than it is in the current epoch, yet similar to that in galaxies at a lookback time of 5.6 Gyr. Taken at face value, these measurements imply different formation epochs for the massive ellipticals in these clusters, but an alternative explanation is a "floor" in the UV emission due to a dispersion in the parameters that govern HB morphology.Comment: 4 pages, Latex. 2 figures. Uses corrected version of emulateapj.sty and apjfonts.sty (included). Accepted for publication in ApJ Letter

    Halos of Spiral Galaxies. III. Metallicity Distributions

    Full text link
    (Abriged) We report results of a campaign to image the stellar populations in the halos of highly inclined spiral galaxies, with the fields roughly 10 kpc (projected) from the nuclei. We use the F814W (I) and F606W (V) filters in the Wide Field Planetary Camera 2, on board the Hubble Space telescope. Extended halo populations are detected in all galaxies. The color-magnitude diagrams appear to be completely dominated by giant-branch stars, with no evidence for the presence of young stellar populations in any of the fields. We find that the metallicity distribution functions are dominated by metal-rich populations, with a tail extending toward the metal poor end. To first order, the overall shapes of the metallicity distribution functions are similar to what is predicted by simple, single-component model of chemical evolution with the effective yields increasing with galaxy luminosity. However, metallicity distributions significantly narrower than the simple model are observed for a few of the most luminous galaxies in the sample. It appears clear that more luminous spiral galaxies also have more metal-rich stellar halos. The increasingly significant departures from the closed-box model for the more luminous galaxies indicate that a parameter in addition to a single yield is required to describe chemical evolution. This parameter, which could be related to gas infall or outflow either in situ or in progenitor dwarf galaxies that later merge to form the stellar halo, tends to act to make the metallicity distributions narrower at high metallicity.Comment: 20 pages, 8 figures (ApJ, in press
    corecore