20,361 research outputs found

    Engineering an all-optical route to ultracold molecules in their vibronic ground state

    Full text link
    We propose an improved photoassociation scheme to produce ultracold molecules in their vibronic ground state for the generic case where non-adiabatic effects facilitating transfer to deeply bound levels are absent. Formation of molecules is achieved by short laser pulses in a Raman-like pump-dump process where an additional near-infrared laser field couples the excited state to an auxiliary state. The coupling due to the additional field effectively changes the shape of the excited state potential and allows for efficient population transfer to low-lying vibrational levels of the electronic ground state. Repetition of many pump-dump sequences together with collisional relaxation allows for accumulation of molecules in v=0.Comment: Phys. Rev. A, in pres

    Can crack front waves explain the roughness of cracks ?

    Full text link
    We review recent theoretical progress on the dynamics of brittle crack fronts and its relationship to the roughness of fracture surfaces. We discuss the possibility that the intermediate scale roughness of cracks, which is characterized by a roughness exponent approximately equal to 0.5, could be caused by the generation, during local instabilities by depinning, of diffusively broadened corrugation waves, which have recently been observed to propagate elastically along moving crack fronts. We find that the theory agrees plausibly with the orders of magnitude observed. Various consequences and limitations, as well as alternative explanations, are discussed. We argue that another mechanism, possibly related to damage cavity coalescence, is needed to account for the observed large scale roughness of cracks that is characterized by a roughness exponent approximately equal to 0.8Comment: 26 pages, 3 .eps figure. Submitted to J. Mech. Phys. Solid

    Foundations for Cooperating with Control Noise in the Manipulation of Quantum Dynamics

    Get PDF
    This paper develops the theoretical foundations for the ability of a control field to cooperate with noise in the manipulation of quantum dynamics. The noise enters as run-to-run variations in the control amplitudes, phases and frequencies with the observation being an ensemble average over many runs as is commonly done in the laboratory. Weak field perturbation theory is developed to show that noise in the amplitude and frequency components of the control field can enhance the process of population transfer in a multilevel ladder system. The analytical results in this paper support the point that under suitable conditions an optimal field can cooperate with noise to improve the control outcome.Comment: submitted to Phys. Rev.

    Overlapping resonances in the control of intramolecular vibrational redistribution

    Get PDF
    Coherent control of bound state processes via the interfering overlapping resonances scenario [Christopher et al., J. Chem. Phys. 123, 064313 (2006)] is developed to control intramolecular vibrational redistribution (IVR). The approach is applied to the flow of population between bonds in a model of chaotic OCS vibrational dynamics, showing the ability to significantly alter the extent and rate of IVR by varying quantum interference contributions.Comment: 10 pages, 7 figure

    Evidence of Songbird Intoxication From Rozol Application at a Black-Tailed Prairie Dog Colony

    Get PDF
    Concerns about avian poisonings from anticoagulant rodenticides have traditionally focused on secondary poisoning of raptors exposed by feeding on contaminated mammalian prey. However, ground foraging songbirds can be directly poisoned from operational applications of the anticoagulant rodenticide RozolH (0.005% chlorophacinone, active ingredient) applied as a grain bait, at black-tailed prairie dog Cynomys ludovicianus colonies. A dead western meadowlark Sturnella neglecta recovered from the study prairie dog colony displayed hemorrhaging in brain and pectoral muscle tissue, and it contained chlorophacinone residue concentrations of 0.59 and 0.49 mg/g (wet weight) in the liver and intestinal contents, respectively. Chlorophacinone residues from two Rozol-colored songbird droppings found at the study colony were 0.09 and 0.46 mg/g (wet weight). The timing of the meadowlark mortality and the occurrence of discolored droppings show that songbird exposure and poisoning can occur weeks after a Rozol application

    Statistical mechanics of Floquet systems with regular and chaotic states

    Full text link
    We investigate the asymptotic state of time-periodic quantum systems with regular and chaotic Floquet states weakly coupled to a heat bath. The asymptotic occupation probabilities of these two types of states follow fundamentally different distributions. Among regular states the probability decreases from the state in the center of a regular island to the outermost state by orders of magnitude, while chaotic states have almost equal probabilities. We derive an analytical expression for the occupations of regular states of kicked systems, which depends on the winding numbers of the regular tori and the parameters temperature and driving frequency. For a constant winding number within a regular island it simplifies to Boltzmann-like weights \exp(-\betaeff \Ereg_m), similar to time-independent systems. For this we introduce the regular energies \Ereg_m of the quantizing tori and an effective winding-number-dependent temperature 1/\betaeff, different from the actual bath temperature. Furthermore, the occupations of other typical Floquet states in a mixed phase space are studied, i.e. regular states on nonlinear resonances, beach states, and hierarchical states, giving rise to distinct features in the occupation distribution. Avoided crossings involving a regular state lead to drastic consequences for the entire set of occupations. We introduce a simplified rate model whose analytical solutions describe the occupations quite accurately.Comment: 18 pages, 11 figure

    Stochastic modelling of intermittent scrape-off layer plasma fluctuations

    Full text link
    Single-point measurements of fluctuations in the scrape-off layer of magnetized plasmas are generally found to be dominated by large-amplitude bursts which are associated with radial motion of blob-like structures. A stochastic model for these fluctuations is presented, with the plasma density given by a random sequence of bursts with a fixed wave form. Under very general conditions, this model predicts a parabolic relation between the skewness and kurtosis moments of the plasma fluctuations. In the case of exponentially distributed burst amplitudes and waiting times, the probability density function for the fluctuation amplitudes is shown to be a Gamma distribution with the scale parameter given by the average burst amplitude and the shape parameter given by the ratio of the burst duration and waiting times.Comment: 11 pages, 1 figur

    Quasiparticles in the Pseudogap Phase of Underdoped Cuprate

    Get PDF
    Recent angle resolved photoemission \cite{yang-nature-08} and scanning tunneling microscopy \cite{kohsaka-nature-08} measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features of the normal state such as particle-hole asymmetry, maxima in the energy dispersion and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang \textit{et al.} for the single particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator.Comment: updated version, 6 pages, 7 figures, 1 table, EPL 86 (2009) 37002 (https://www.epletters.net
    • …
    corecore