13,476 research outputs found

    Aircraft turbofan noise

    Get PDF
    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed

    Wheat yield forecasts using LANDSAT data

    Get PDF
    Several considerations of winter wheat yield prediction using LANDSAT data were discussed. In addition, a simple technique which permits direct early season forecasts of wheat production was described

    Forecasts of winter wheat yield and production using LANDSAT data

    Get PDF
    There are no author-identified significant results in this report

    Covalent bonding and hybridization effects in the corundum-type transition-metal oxides V2O3 and Ti2O3

    Get PDF
    The electronic structure of the corundum-type transition-metal oxides V2O3 and Ti2O3 is studied by means of the augmented spherical wave method, based on density-functional theory and the local density approximation. Comparing the results for the vanadate and the titanate allows us to understand the peculiar shape of the metal 3d a_{1g} density of states, which is present in both compounds. The a_{1g} states are subject to pronounced bonding-antibonding splitting due to metal-metal overlap along the c-axis of the corundum structure. However, the corresponding partial density of states is strongly asymmetric with considerably more weight on the high energy branch. We argue that this asymmetry is due to an unexpected broadening of the bonding a_{1g} states, which is caused by hybridization with the e_g^{pi} bands. In contrast, the antibonding a_{1g} states display no such hybridization and form a sharp peak. Our results shed new light on the role of the a_{1g} orbitals for the metal-insulator transitions of V2O3. In particular, due to a_{1g} - e_g^{pi} hybridization, an interpretation in terms of molecular orbital singlet states on the metal-metal pairs along the c-axis is not an adequate description.Comment: 7 pages, 3 figures, more information at http://www.physik.uni-augsburg.de/~eyert

    Random wave functions and percolation

    Full text link
    Recently it was conjectured that nodal domains of random wave functions are adequately described by critical percolation theory. In this paper we strengthen this conjecture in two respects. First, we show that, though wave function correlations decay slowly, a careful use of Harris' criterion confirms that these correlations are unessential and nodal domains of random wave functions belong to the same universality class as non critical percolation. Second, we argue that level domains of random wave functions are described by the non-critical percolation model.Comment: 13 page

    Wheat productivity estimates using LANDSAT data

    Get PDF
    The author has identified the following significant results. Large area LANDSAT yield estimates were generated. These results were compared with estimates computed using a meteorological yield model (CCEA). Both of these estimates were compared with Kansas Crop and Livestock Reporting Service (KCLRS) estimates of yield, in an attempt to assess the relative and absolute accuracy of the LANDSAT and CCEA estimates. Results were inconclusive. A large area direct wheat prediction procedure was implemented. Initial results have produced a wheat production estimate comparable with the KCLRS estimate

    Placing Confidence Limits on Polarization Measurements

    Full text link
    The determination of the true source polarization given a set of measurements is complicated by the requirement that the polarization always be positive. This positive bias also hinders construction of upper limits, uncertainties, and confidence regions, especially at low signal-to-noise levels. We generate the likelihood function for linear polarization measurements and use it to create confidence regions and upper limits. This is accomplished by integrating the likelihood function over the true polarization (parameter space), rather than the measured polarization (data space). These regions are valid for both low and high signal-to-noise measurements.Comment: 8 pages, 3 figures, 1 table, submitted to PAS

    Oxide Fiber Cathode Materials for Rechargeable Lithium Cells

    Get PDF
    LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively. In contrast, LiCoO2 or LiNiO2 fibers can be pressed and sintered to form a cathode, without need for a binder or a conductive additive. The inter-grain contacts of the fibers are stronger and have fewer defects than do those of powder particles. These characteristics translate to increased flexibility and greater resilience on cycling and, consequently, to reduced loss of capacity from cycle to cycle. Moreover, in comparison with a powder-based cathode, a fiber-based cathode is expected to exhibit significantly greater ionic and electronic conduction along the axes of the fibers. Results of preliminary charge/discharge-cycling tests suggest that energy densities of LiCoO2- and LiNiO2-fiber cathodes are approximately double those of the corresponding powder-based cathodes

    The luminosity function of the brightest galaxies in the IRAS survey

    Get PDF
    Results from a study of the far infrared properties of the brightest galaxies in the IRAS survey are described. There is a correlation between the infrared luminosity and the infrared to optical luminosity ratio and between the infrared luminosity and the far infrared color temperature in these galaxies. The infrared bright galaxies represent a significant component of extragalactic objects in the local universe, being comparable in space density to the Seyferts, optically identified starburst galaxies, and more numerous than quasars at the same bolometric luminosity. The far infrared luminosity in the local universe is approximately 25% of the starlight output in the same volume

    Doped Spin Liquid: Luttinger Sum Rule and Low Temperature Order

    Full text link
    We analyze a model of two-leg Hubbard ladders weakly coupled by interladder tunneling. At half filling a semimetallic state with small Fermi pockets is induced beyond a threshold tunneling strength. The sign changes in the single electron Green's function relevant for the Luttinger Sum Rule now take place at surfaces with both zeroes and infinities with important consequences for the interpretation of ARPES experiments. Residual interactions between electron and hole-like quasi-particles cause a transition to long range order at low temperatures. The theory can be extended to small doping leading to superconducting order.Comment: 4 pages, 3 figure
    corecore