250 research outputs found

    Phase Transitions Between Topologically Distinct Gapped Phases in Isotropic Spin Ladders

    Full text link
    We consider various two-leg ladder models exhibiting gapped phases. All of these phases have short-ranged valence bond ground states, and they all exhibit string order. However, we show that short-ranged valence bond ground states divide into two topologically distinct classes, and as a consequence, there exist two topologically distinct types of string order. Therefore, not all gapped phases belong to the same universality class. We show that phase transitions occur when we interpolate between models belonging to different topological classes, and we study the nature of these transitions.Comment: 11 pages, 16 postscript figure

    A Fermi Surface study of Ba1x_{1-x}Kx_{x}BiO3_{3}

    Full text link
    We present all electron computations of the 3D Fermi surfaces (FS's) in Ba1x_{1-x}Kx_{x}BiO3_{3} for a number of different compositions based on the selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) approach for incorporating the effects of Ba/K substitution. By assuming a simple cubic structure throughout the composition range, the evolution of the nesting and other features of the FS of the underlying pristine phase is correlated with the onset of various structural transitions with K doping. A parameterized scheme for obtaining an accurate 3D map of the FS in Ba1x_{1-x}Kx_{x}BiO3_{3} for an arbitrary doping level is developed. We remark on the puzzling differences between the phase diagrams of Ba1x_{1-x}Kx_{x}BiO3_{3} and BaPbx_{x}Bi1x_{1-x}O3_{3} by comparing aspects of their electronic structures and those of the end compounds BaBiO3_{3}, KBiO3_3 and BaPbO3_3. Our theoretically predicted FS's in the cubic phase are relevant for analyzing high-resolution Compton scattering and positron-annihilation experiments sensitive to the electron momentum density, and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.

    Jordan-Wigner approach to dynamic correlations in spin-ladders

    Full text link
    We present a method for studying the excitations of low-dimensional quantum spin systems based on the Jordan-Wigner transformation. Using an extended RPA-scheme we calculate the correlation function of neighboring spin flips which well approximates the optical conductivity of Sr2CuO3{\rm Sr_2CuO_3}. We extend this approach to the two-leg S=1/2S=1/2--ladder by numbering the spin operators in a meander-like sequence. We obtain good agreement with the optical conductivity of the spin ladder compound (La,Ca)14_{14}Cu24_{24}O41_{41} for polarization along the rungs. For polarization along the legs higher order correlations are important to explain the weight of high-energy continuum excitations and we estimate the contribution of 4-- and 6--fermion processes.Comment: 15 pages, 16 figure

    Phase diagrams of spin ladders with ferromagnetic legs

    Full text link
    The low-temperature properties of the spin S=1/2 ladder with anisotropic ferromagnetic legs are studied using the continuum limit bosonization approach. The weak-coupling ground state phase diagram of the model is obtained for a wide range of coupling constants and several unconventional gapless ''spin-liquid'' phases are shown to exist for ferromagnetic coupling. The behavior of the ladder system in the vicinity of the ferromagnetic instability point is discussed in detail.Comment: 11 pages, 4 figure

    Anomalous c-axis charge dynamics in copper oxide materials

    Full text link
    Within the t-J model, the c-axis charge dynamics of the copper oxide materials in the underdoped and optimally doped regimes is studied by considering the incoherent interlayer hopping. It is shown that the c-axis charge dynamics is mainly governed by the scattering from the in-plane fluctuation. In the optimally doped regime, the c-axis resistivity is a linear in temperatures, and shows the metallic-like behavior for all temperatures, while the c-axis resistivity in the underdoped regime is characterized by a crossover from the high temperature metallic-like behavior to the low temperature semiconducting-like behavior, which are consistent with experiments and numerical simulations.Comment: 6 pages, Latex, Three figures are adde
    corecore