250 research outputs found
Phase Transitions Between Topologically Distinct Gapped Phases in Isotropic Spin Ladders
We consider various two-leg ladder models exhibiting gapped phases. All of
these phases have short-ranged valence bond ground states, and they all exhibit
string order. However, we show that short-ranged valence bond ground states
divide into two topologically distinct classes, and as a consequence, there
exist two topologically distinct types of string order. Therefore, not all
gapped phases belong to the same universality class. We show that phase
transitions occur when we interpolate between models belonging to different
topological classes, and we study the nature of these transitions.Comment: 11 pages, 16 postscript figure
A Fermi Surface study of BaKBiO
We present all electron computations of the 3D Fermi surfaces (FS's) in
BaKBiO for a number of different compositions based on the
selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation
(KKR-CPA) approach for incorporating the effects of Ba/K substitution. By
assuming a simple cubic structure throughout the composition range, the
evolution of the nesting and other features of the FS of the underlying
pristine phase is correlated with the onset of various structural transitions
with K doping. A parameterized scheme for obtaining an accurate 3D map of the
FS in BaKBiO for an arbitrary doping level is developed. We
remark on the puzzling differences between the phase diagrams of
BaKBiO and BaPbBiO by comparing aspects
of their electronic structures and those of the end compounds BaBiO,
KBiO and BaPbO. Our theoretically predicted FS's in the cubic phase are
relevant for analyzing high-resolution Compton scattering and
positron-annihilation experiments sensitive to the electron momentum density,
and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.
Jordan-Wigner approach to dynamic correlations in spin-ladders
We present a method for studying the excitations of low-dimensional quantum
spin systems based on the Jordan-Wigner transformation. Using an extended
RPA-scheme we calculate the correlation function of neighboring spin flips
which well approximates the optical conductivity of . We
extend this approach to the two-leg --ladder by numbering the spin
operators in a meander-like sequence. We obtain good agreement with the optical
conductivity of the spin ladder compound (La,Ca)CuO for
polarization along the rungs. For polarization along the legs higher order
correlations are important to explain the weight of high-energy continuum
excitations and we estimate the contribution of 4-- and 6--fermion processes.Comment: 15 pages, 16 figure
Phase diagrams of spin ladders with ferromagnetic legs
The low-temperature properties of the spin S=1/2 ladder with anisotropic
ferromagnetic legs are studied using the continuum limit bosonization approach.
The weak-coupling ground state phase diagram of the model is obtained for a
wide range of coupling constants and several unconventional gapless
''spin-liquid'' phases are shown to exist for ferromagnetic coupling. The
behavior of the ladder system in the vicinity of the ferromagnetic instability
point is discussed in detail.Comment: 11 pages, 4 figure
Anomalous c-axis charge dynamics in copper oxide materials
Within the t-J model, the c-axis charge dynamics of the copper oxide
materials in the underdoped and optimally doped regimes is studied by
considering the incoherent interlayer hopping. It is shown that the c-axis
charge dynamics is mainly governed by the scattering from the in-plane
fluctuation. In the optimally doped regime, the c-axis resistivity is a linear
in temperatures, and shows the metallic-like behavior for all temperatures,
while the c-axis resistivity in the underdoped regime is characterized by a
crossover from the high temperature metallic-like behavior to the low
temperature semiconducting-like behavior, which are consistent with experiments
and numerical simulations.Comment: 6 pages, Latex, Three figures are adde
- …