2,562 research outputs found

    Visually guided control of movement in the context of multimodal stimulation

    Get PDF
    Flight simulation has been almost exclusively concerned with simulating the motions of the aircraft. Physically distinct subsystems are often combined to simulate the varieties of aircraft motion. Visual display systems simulate the motion of the aircraft relative to remote objects and surfaces (e.g., other aircraft and the terrain). 'Motion platform' simulators recreate aircraft motion relative to the gravitoinertial vector (i.e., correlated rotation and tilt as opposed to the 'coordinated turn' in flight). 'Control loaders' attempt to simulate the resistance of the aerodynamic medium to aircraft motion. However, there are few operational systems that attempt to simulate the motion of the pilot relative to the aircraft and the gravitoinertial vector. The design and use of all simulators is limited by poor understanding of postural control in the aircraft and its effect on the perception and control of flight. Analysis of the perception and control of flight (real or simulated) must consider that: (1) the pilot is not rigidly attached to the aircraft; and (2) the pilot actively monitors and adjusts body orientation and configuration in the aircraft. It is argued that this more complete approach to flight simulation requires that multimodal perception be considered as the rule rather than the exception. Moreover, the necessity of multimodal perception is revealed by emphasizing the complementarity rather than the redundancy among perceptual systems. Finally, an outline is presented for an experiment to be conducted at NASA ARC. The experiment explicitly considers possible consequences of coordination between postural and vehicular control

    Independent Orbiter Assessment (IOA): Analysis of the rudder/speed brake subsystem

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Rudder/Speedbrake Actuation Mechanism is documented. The function of the Rudder/Speedbrake (RSB) is to provide directional control and to provide a means of energy control during entry. The system consists of two panels on a vertical hinge mounted on the aft part of the vertical stabilizer. These two panels move together to form a rudder but split apart to make a speedbrake. The Rudder/Speedbrake Actuation Mechanism consists of the following elements: (1) Power Drive Unit (PDU) which is composed of hydraulic valve module and a hydraulic motor-powered gearbox which contains differentials and mixer gears to provide PDU torque output; (2) four geared rotary actuators which apply the PDU generated torque to the rudder/speedbrake panels; and (3) ten torque shafts which join the PDU to the rotary actuators and interconnect the four rotary actuators. Each level of hardware was evaluated and analyzed for possible failures and causes. Criticality was assigned based upon the severity of the effect for each failure mode. Critical RSB failures which result in potential loss of vehicle control were mainly due to loss of hydraulic fluid, fluid contaminators, and mechanical failures in gears and shafts

    Independent Orbiter Assessment (IOA): Analysis of the body flap subsystem

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Body Flap (BF) subsystem hardware are documented. The BF is a large aerosurface located at the trailing edge of the lower aft fuselage of the Orbiter. The proper function of the BF is essential during the dynamic flight phases of ascent and entry. During the ascent phase of flight, the BF trails in a fixed position. For entry, the BF provides elevon load relief, trim control, and acts as a heat shield for the main engines. Specifically, the BF hardware comprises the following components: Power Drive Unit (PDU), rotary actuators, and torque tubes. The IOA analysis process utilized available BF hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 35 failure modes analyzed, 19 were determined to be PCIs

    Independent Orbiter Assessment (IOA): Analysis of the ascent thrust vector control actuator subsystem

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Ascent Thrust Vector Control (ATVC) Actuator hardware are documented. The function of the Ascent Thrust Vector Control Actuators (ATVC) is to gimbal the main engines to provide for attitude and flight path control during ascent. During first stage flight, the SRB nozzles provide nearly all the steering. After SRB separation, the Orbiter is steered by gimbaling of its main engines. There are six electrohydraulic servoactuators, one pitch and one yaw for each of the three main engines. Each servoactuator is composed of four electrohydraulic servovalve assemblies, one second stage power spool valve assembly, one primary piston assembly and a switching valve. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Critical failures resulting in loss of ATVC were mainly due to loss of hydraulic fluid, fluid contamination and mechanical failures

    Independent Orbiter Assessment (IOA): Analysis of the elevon subsystem

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Elevon system hardware. The elevon actuators are located at the trailing edge of the wing surface. The proper function of the elevons is essential during the dynamic flight phases of ascent and entry. In the ascent phase of flight, the elevons are used for relieving high wing loads. For entry, the elevons are used to pitch and roll the vehicle. Specifically, the elevon system hardware comprises the following components: flow cutoff valve; switching valve; electro-hydraulic (EH) servoactuator; secondary delta pressure transducer; bypass valve; power valve; power valve check valve; primary actuator; primary delta pressure transducer; and primary actuator position transducer. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 25 failure modes analyzed, 18 were determined to be PCIs

    Multimodal Perception and Multicriterion Control of Nested Systems

    Get PDF
    The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control

    Understanding Skill in EVA Mass Handling

    Get PDF
    Key attributes of skilled mass handling were identified through an examination of lessons learned by the extravehicular activity operational community. These qualities were translated into measurable quantities. The operational validity of the ground-based investigation was improved by building a device that increased the degrees of freedom of extravehicular mobility unit motion on the Precision Air-Bearing Floor. The results revealed subtle patterns of interaction between motions of an orbital replacement unit mockup and mass handler that should be important for effective performance on orbit. The investigation also demonstrated that such patterns can be measured with a variety of common instruments and under imperfect conditions of observation

    Therapeutic advances in ADPKD: the future awaits

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder included in ciliopathies, representing the fourth cause of end stage renal disease (ESRD), with an estimated prevalence between 1:1000 and 1:2500. It is mainly caused by mutations in the PKD1 and PKD2 genes encoding for polycystin 1 (PC1) and polycystin 2 (PC2), which regulate differentiation, proliferation, survival, apoptosis, and autophagy. The advances in the knowledge of multiple molecular pathways involved in the pathophysiology of ADPKD led to the development of several treatments which are currently under investigation. Recently, the widespread approval of tolvaptan and, in Italy, of long-acting release octreotide (octreotide-LAR), represents but the beginning of the new therapeutic management of ADPKD patients. Encouraging results are expected from ongoing randomized controlled trials (RCTs), which are investigating not only drugs acting on the calcium/cyclic adenosin monoposphate (cAMP) pathway, the most studied target so far, but also molecules targeting specific pathophysiological pathways (e.g. epidermal growth factor (EGF) receptor, AMP-activated protein kinase (AMPK) and KEAP1-Nrf2) and sphingolipids. Moreover, studies on animal models and cultured cells have also provided further promising therapeutic strategies based on the role of intracellular calcium, cell cycle regulation, MAPK pathway, epigenetic DNA, interstitial inflammation, and cell therapy. Thus, in a near future, tailored therapy could be the key to changing the natural history of ADPKD thanks to the vigorous efforts that are being made to implement clinical and preclinical studies in this field. Our review aimed to summarize the spectrum of drugs that are available in the clinical practice and the most promising molecules undergoing clinical, animal, and cultured cell studies. Graphical abstract: [Figure not available: see fulltext.
    • …
    corecore