4 research outputs found

    The Low-Energy Module (LEM): Development of a CubeSat Spectrometer for Sub-MeV Particles and Gamma-Ray Burst Detection

    No full text
    An accurate flux measurement of low-energy charged particles trapped in the magnetosphere is necessary for space weather characterization and to study the coupling between the lithosphere and magnetosphere, which allows for the investigation of the correlations between seismic events and particle precipitation from Van Allen belts. In this work, the project of a CubeSat space spectrometer, the Low-Energy Module (LEM), is shown. The detector will be able to perform an event-based measurement of the energy, arrival direction, and composition of low-energy charged particles down to 0.1 MeV. Moreover, thanks to a CdZnTe mini-calorimeter, the LEM spectrometer also allows for photon detection in the sub-MeV range, joining the quest for the investigation of the nature of Gamma-ray bursts. The particle identification of the LEM relies on the ΔE−E technique performed by thin silicon detectors. This multipurpose spectrometer will fit within a 10 × 10 × 10 cm3 CubeSat frame, and it will be constructed as a joint project between the University of Trento, FBK, and INFN-TIFPA. To fulfil the size and mass requirements, an innovative approach, based on active particle collimation, was designed for the LEM; this avoids the heavy/bulky passive collimators of previous space detectors. In this paper, we will present the LEM geometry, its detection concept, and the results from the developed GEANT4 simulation

    A Compact Particle Detector for Space-Based Applications: Development of a Low-Energy Module (LEM) for the NUSES Space Mission

    Get PDF
    NUSES is a planned space mission aiming to test new observational and technological approaches related to the study of relatively low-energy cosmic rays, gamma rays, and high-energy astrophysical neutrinos. Two scientific payloads will be hosted onboard the NUSES space mission: Terzina and Zirè. Terzina will be an optical telescope readout by SiPM arrays, for the detection and study of Cerenkov light emitted by Extensive Air Showers generated by high-energy cosmic rays and neutrinos in the atmosphere. Zirè will focus on the detection of protons and electrons up to a few hundred MeV and to 0.1–10 MeV photons and will include the Low Energy Module (LEM). The LEM will be a particle spectrometer devoted to the observation of fluxes of relatively low-energy electrons in the 0.1–7-MeV range and protons in the 3–50 MeV range along the Low Earth Orbit (LEO) followed by the hosting platform. The detection of Particle Bursts (PBs) in this Physics channel of interest could give new insight into the understanding of complex phenomena such as eventual correlations between seismic events or volcanic activity with the collective motion of particles in the plasma populating van Allen belts. With its compact sizes and limited acceptance, the LEM will allow the exploration of hostile environments such as the South Atlantic Anomaly (SAA) and the inner Van Allen Belt, in which the anticipated electron fluxes are on the order of 106 to 107 electrons per square centimeter per steradian per second. Concerning the vast literature of space-based particle spectrometers, the innovative aspect of the LEM resides in its compactness, within 10 × 10 × 10 cm3, and in its “active collimation” approach dealing with the problem of multiple scattering at these very relatively low energies. In this work, the geometry of the detector, its detection concept, its operation modes, and the hardware adopted will be presented. Some preliminary results from the Monte Carlo simulation (Geant4) will be shown

    Development of a Muon detector for educational purposes

    Full text link
    [EN] In the effort to communicate modern physics to a vast audience, the flux of cosmic ray muons is commonly mentioned as the most abundant, naturally available particle/radioactivity source. The detection of atmospheric muons can therefore make up a powerful workbench for educational purposes, allowing many laboratory experiences in different topics of modern physics like: special relativity, cosmic rays, statistics and particle detection. Unfortunately, a particle detector being suitable for cosmic ray muon identification is typically expensive, cumbersome and requires high voltage, thus preventing its widespread application in laboratory sessions based on cosmic ray muons, ex.gr. for undergraduate courses. Here we describe the project for a low-cost muon detector based on a plastic scintillator coupled with silicon photomultipliers, whose signals are acquired and preprocessed via a common FPGA evaluation board. Besides the detector, which was developed by supervised master students, we describe some possible physics measurements.Iuppa, R.; Nicolaidis, R.; Nozzoli, F.; Ricci, L. (2022). Development of a Muon detector for educational purposes. En 8th International Conference on Higher Education Advances (HEAd'22). Editorial Universitat Politècnica de València. 559-566. https://doi.org/10.4995/HEAd22.2022.1425855956

    The Low-Energy Module (LEM): Development of a CubeSat Spectrometer for Sub-MeV Particles and Gamma-Ray Burst Detection

    No full text
    An accurate flux measurement of low-energy charged particles trapped in the magnetosphere is necessary for space weather characterization and to study the coupling between the lithosphere and magnetosphere, which allows for the investigation of the correlations between seismic events and particle precipitation from Van Allen belts. In this work, the project of a CubeSat space spectrometer, the Low-Energy Module (LEM), is shown. The detector will be able to perform an event-based measurement of the energy, arrival direction, and composition of low-energy charged particles down to 0.1 MeV. Moreover, thanks to a CdZnTe mini-calorimeter, the LEM spectrometer also allows for photon detection in the sub-MeV range, joining the quest for the investigation of the nature of Gamma-ray bursts. The particle identification of the LEM relies on the ΔE−E technique performed by thin silicon detectors. This multipurpose spectrometer will fit within a 10 × 10 × 10 cm3 CubeSat frame, and it will be constructed as a joint project between the University of Trento, FBK, and INFN-TIFPA. To fulfil the size and mass requirements, an innovative approach, based on active particle collimation, was designed for the LEM; this avoids the heavy/bulky passive collimators of previous space detectors. In this paper, we will present the LEM geometry, its detection concept, and the results from the developed GEANT4 simulation
    corecore