4 research outputs found

    Effect of a Blend of Essential Oils, Bioflavonoids and Tannins on In Vitro Methane Production and In Vivo Production Efficiency in Dairy Cows

    No full text
    Two trials were performed to evaluate the efficacy of a blend of essential oils, bioflavonoids and tannins on methane (CH4) emissions (in vitro) and on the production efficiency of dairy cows (in vivo). The in vitro trial tested the production of total gas and CH4 at 16, 20 and 24 h of incubation, and volatile fatty acids (VFA) at 16 and 24 h, through biochemical methane potential (BMP) assays. In the in vivo trial, milk yield, dry matter intake (DMI), feed conversion rate (FCR), milk quality and apparent total tract digestibility (aTTD) were evaluated in 140 lactating Holstein Friesian cows. Animals were allocated into two groups: (i) Control, standard diet; (ii) Treatment, standard diet plus 10 g/head/d of a powder with a 10% concentration of a blend of essential oils, bioflavonoids and tannins. Statistical analysis was performed using the mixed procedure of SAS either for single or repeated measures. For all the parameters a p-value ≤ 0.05 was considered statistically significant. The blend significantly reduced the in vitro total gas and CH4 emissions at 16, 20 and 24 h of incubation (p < 0.001). In addition, acetic acid was reduced (p < 0.001), while propionic acid concentration was increased (p < 0.001) at 16 h and 24 h. In the in vivo trial, the Treatment group showed significantly raised milk yield, DMI, FCR (p < 0.001), and of the aTTD of cellulose and starch (p ≤ 0.002), while the milk quality traits were not affected. Overall, the results from the study indicated that the blend of essential oils, bioflavonoids, and tannins significantly reduced in vitro total gas and CH4 production and improved the production efficiency of lactating dairy cows in vivo

    Effect of Slow-Release Urea Administration on Production Performance, Health Status, Diet Digestibility, and Environmental Sustainability in Lactating Dairy Cows

    No full text
    The effects of partially replacing soybean meal (SBM) with a slow-release urea source (SRU) on production performance, feed efficiency, digestibility, and environmental sustainability of dairy cows were evaluated. A total of 140 lactating Holstein Frisian cows were allocated into two study groups: (i) control (diet entirely based on SBM), and (ii) treatment (diet of 0.22% on dry matter basis (d.m.)) of SRU. Milk yield, dry matter intake (DMI), feed conversion rate (FCR), body condition score (BCS), reproductive parameters, and milk quality were evaluated. The chemical composition of the feeds and feces were analyzed to calculate the in vivo digestibility of the two diets. The carbon footprint (CFP) and predicted methane (CH4) emissions were evaluated. The inclusion of SRU significantly increases milk yield, DMI, and FCR (p < 0.0001), whereas milk quality, BCS, and reproductive indicators were not affected (p > 0.05). In the treatment group, the digestibility of crude protein (CP) (p = 0.012), NDF (p = 0.039), and cellulose (p = 0.033) was significantly higher, while the other nutritional parameters weren’t affected. All the environmental parameters were significantly improved in the treatment group (p < 0.0001). Replacing SBM with SRU can be a strategy to enhance dairy cows’ sustainability due to improved production efficiency, reduced feed CFP, and predicted CH4 production

    Feeding Bakery Former Foodstuffs and Wheat Distiller’s as Partial Replacement for Corn and Soybean Enhances the Environmental Sustainability and Circularity of Beef Cattle Farming

    No full text
    The effects of the partial substitution of corn and soybean meals with bakery former foodstuffs (BFF) and wheat wet distiller’s grains (WDGs) on environmental sustainability, production performance, and health status were evaluated in beef cattle. Newly arrived Limousine beef heifers (n = 408) housed an intensive farm in Campagnatico (Grosseto, Italy) were balanced for initial weight and body conformation and then randomly divided in two groups: (i) Traditional corn–soybean meal diet; (ii) Circular diet with average as-fed 1.5 kg BFF and 1.5 kg WDGs as substitute for 1.6 kg corn and 0.3 kg soybean meal. The environmental impact of the diet was analyzed considering greenhouse gases emissions (GHG, kg CO2 eq), water (H2O, L), and land use (LU, m2) as well as consumption of human-edible feeds (HE, kg). The growth performance, feed intake (FI), feed conversion ratio (FCR), carcass characteristics, apparent total tract digestibility (aTTD), and health status of heifers were evaluated. The Circular diet led to a reduction per kg of cold carcass weight (CCW) of 1.00 kg CO2 eq of GHG, 72.38 L of H2O, 1.20 m2 of LU, and 0.95 kg of HE (p < 0.0001). Growth performances, carcass characteristics, and health status were not affected (p > 0.05). Sugar and pectin aTTD were significantly higher (p < 0.0001) in the Circular group. Replacing traditional feed ingredients with BFF and WDGs reduced the environmental impact of the diet of fattening Limousine heifers and the food competition between humans and beef cattle in accordance with circular economy principles
    corecore