5 research outputs found

    Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently

    No full text
    Here, we show that framework tin sites in pure silica zeolite Beta (Sn-Beta) can isomerize glucose to fructose by a Lewis acid-mediated intramolecular hydride shift in aqueous solvent, but not in methanol solvent. Mechanistic studies using isotopically labeled (<sup>2</sup>H, <sup>13</sup>C) glucose reactants show that in methanol, Sn-Beta instead epimerizes glucose to mannose by a Lewis acid-mediated intramolecular carbon shift mechanism known as the Bilik reaction. We also provide evidence that extraframework tin sites located within the hydrophobic channels of zeolite Beta can isomerize glucose to fructose in both water and methanol solvent, but through a base-catalyzed proton-transfer mechanism. SnO<sub>2</sub> particles located at external zeolite crystal surfaces or supported on amorphous silica catalyze isomerization in methanol but not in water, suggesting that contact with bulk water inhibits isomerization at SnO<sub>2</sub> surfaces. <sup>119</sup>Sn MAS NMR spectroscopy was used to unambiguously identify framework Sn sites, which give resonances for octahedral Sn (−685 to −700 ppm) in hydrated Sn-Beta that disappear upon dehydration, with the concomitant appearance of resonances for tetrahedral Sn (−425 to −445 ppm). In sharp contrast, spectra of hydrated samples containing extraframework SnO<sub>2</sub> show resonances for octahedral Sn centered at −604 ppm that do not change upon dehydration. These findings demonstrate that aldose–ketose isomerization reactivity on Sn-zeolite samples cannot be ascribed to the presence of framework Sn sites in the absence of isotopic labeling studies. They also indicate that any Sn-zeolite samples that initially convert glucose to fructose, instead of mannose, in methanol solvent contain Sn species that are structurally different from framework Sn centers

    Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose

    No full text
    Framework Lewis acidic tin sites in hydrophobic, pure-silica molecular sieves with the zeolite beta topology (Sn-Beta) have been reported previously to predominantly catalyze glucose−fructose isomerization via 1,2 intramolecular hydride shift in water and glucose–mannose epimerization via 1,2 intramolecular carbon shift in methanol. Here, we show that alkali-free Sn-Beta predominantly isomerizes glucose to fructose via 1,2 intramolecular hydride shift in both water and methanol. Increasing extents of postsynthetic Na<sup>+</sup> exchange onto Sn-Beta, however, progressively shifts the reaction pathway toward glucose–mannose epimerization via 1,2 intramolecular carbon shift. Na<sup>+</sup> remains exchanged onto silanol groups proximal to Sn centers during reaction in methanol solvent, leading to nearly exclusive selectivity toward epimerization. In contrast, decationation occurs with increasing reaction time in aqueous solvent and gradually shifts the reaction selectivity to isomerization at the expense of epimerization. Decationation and the concomitant selectivity changes are mitigated by the addition of NaCl to the aqueous reaction solution. Preadsorption of ammonia onto Sn-Beta leads to near complete suppression of infrared and <sup>119</sup>Sn nuclear magnetic resonance spectroscopic signatures attributed to open Sn sites and of glucose−fructose isomerization pathways in water and methanol. These data provide evidence that Lewis acidic open Sn sites with either proximal silanol groups or Na-exchanged silanol groups are respectively the active sites for glucose–fructose isomerization and glucose–mannose epimerization

    Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose

    Get PDF
    Framework Lewis acidic tin sites in hydrophobic, pure-silica molecular sieves with the zeolite beta topology (Sn-Beta) have been reported previously to predominantly catalyze glucose−fructose isomerization via 1,2 intramolecular hydride shift in water and glucose–mannose epimerization via 1,2 intramolecular carbon shift in methanol. Here, we show that alkali-free Sn-Beta predominantly isomerizes glucose to fructose via 1,2 intramolecular hydride shift in both water and methanol. Increasing extents of postsynthetic Na<sup>+</sup> exchange onto Sn-Beta, however, progressively shifts the reaction pathway toward glucose–mannose epimerization via 1,2 intramolecular carbon shift. Na<sup>+</sup> remains exchanged onto silanol groups proximal to Sn centers during reaction in methanol solvent, leading to nearly exclusive selectivity toward epimerization. In contrast, decationation occurs with increasing reaction time in aqueous solvent and gradually shifts the reaction selectivity to isomerization at the expense of epimerization. Decationation and the concomitant selectivity changes are mitigated by the addition of NaCl to the aqueous reaction solution. Preadsorption of ammonia onto Sn-Beta leads to near complete suppression of infrared and <sup>119</sup>Sn nuclear magnetic resonance spectroscopic signatures attributed to open Sn sites and of glucose−fructose isomerization pathways in water and methanol. These data provide evidence that Lewis acidic open Sn sites with either proximal silanol groups or Na-exchanged silanol groups are respectively the active sites for glucose–fructose isomerization and glucose–mannose epimerization

    Lewis–Brønsted Acid Pairs in Ga/H-ZSM‑5 To Catalyze Dehydrogenation of Light Alkanes

    No full text
    The active sites for propane dehydrogenation in Ga/H-ZSM-5 with moderate concentrations of tetrahedral aluminum in the lattice were identified to be Lewis–Brønsted acid pairs. With increasing availability, Ga<sup>+</sup> and Brønsted acid site concentrations changed inversely, as protons of Brønsted acid sites were exchanged with Ga<sup>+</sup>. At a Ga/Al ratio of 1/2, the rate of propane dehydrogenation was 2 orders of magnitude higher than with the parent H-ZSM-5, highlighting the extraordinary activity of the Lewis–Brønsted acid pairs. Density functional theory calculations relate the high activity to a bifunctional mechanism that proceeds via heterolytic activation of the propane C–H bond followed by a monomolecular elimination of H<sub>2</sub> and desorption of propene

    Influence of 1‑Butene Adsorption on the Dimerization Activity of Single Metal Cations on UiO-66 Nodes

    No full text
    Grafting metal cations to missing linker defect sites in zirconium-based metal–organic frameworks, such as UiO-66, produces a uniquely well-defined and homotopic catalytically active site. We present here the synthesis and characterization of a group of UiO-66-supported metal catalysts, M-UiO-66 (M = Ni, Co, Cu, and Cr), for the catalytic dimerization of alkenes. The hydrogen–deuterium exchange via deuterium oxide adsorption followed by infrared spectroscopy showed that the last molecular water ligand desorbs from the sites after evacuation at 300 °C leading to M(OH)-UiO-66 structures. Adsorption of 1-butene is studied using calorimetry and density functional theory techniques to characterize the interactions of the alkene with metal cation sites that are found active for alkene oligomerization. For the most active Ni-UiO-66, the removal of molecular water from the active site significantly increases the 1-butene adsorption enthalpy and almost doubles the catalytic activity for 1-butene dimerization in comparison to the presence of water ligands. Other M-UiO-66 (M = Co, Cu, and Cr) exhibit 1–3 orders of magnitude lower catalytic activities compared to Ni-UiO-66. The catalytic activities correlate linearly with the Gibbs free energy of 1-butene adsorption. Density functional theory calculations probing the Cossee–Arlman mechanism for all metals support the differences in activity, providing a molecular level understanding of the metal site as the active center for 1-butene dimerization
    corecore