6 research outputs found

    Role Of Substance P And Bradykinin In Acute Pancreatitis Induced By Secretory Phospholipase A2.

    No full text
    Secretory phospholipases A2 (sPLA2s) induce acute pancreatitis when injected into the common bile duct of rats. Substance P via neurokinin 1 (NK-1) receptors and bradykinin via B2 receptors are described to play important roles in the pathophysiology of acute pancreatitis. This study was undertaken to evaluate the role of substance P and bradykinin in the sPLA2-induced pancreatitis. Rats were submitted to the common bile duct injection of sPLA2 obtained from Naja mocambique mocambique venom at 300 microg/kg. At 4 hours thereafter, measurement of pancreatic plasma extravasation, pancreatic and lung myeloperoxidase (MPO), serum amylase, and serum tumor necrosis factor alpha levels were evaluated. Injection of sPLA2 significantly increased all parameters evaluated. Pretreatment with either the NK-1 receptor antagonist SR140333 or the B2 receptor antagonist icatibant largely reduced the increased pancreatic plasma extravasation and circulating levels of tumor necrosis factor alpha. Both treatments partly reduced the MPO levels in the pancreas, whereas in the lungs, icatibant was more efficient to reduce the increased MPO levels. In addition, icatibant largely reduced the serum levels of amylase, whereas SR140333 had no significant effect. We concluded that NK-1 and B2 receptors can regulate important steps in the local and remote inflammation during acute pancreatitis induced by sPLA2.3750-

    Inflammatory Oedema Induced By Phospholipases A2 Isolated From Crotalus Durissus Sp. In The Rat Dorsal Skin: A Role For Mast Cells And Sensory C-fibers.

    No full text
    The ability of the phospholipases A(2) (PLA(2)s) from Crotalus durissus cascavella, Crotalus durissus collilineatus and Crotalus durissus terrificus venoms and crotapotin to increase the vascular permeability in the rat skin as well as the contribution of both mast cells and sensory C-fibers have been investigated in this study. Vascular permeability was measured as the plasma extravascular accumulation at skin sites of intravenously injected 125I-human serum albumin. Intradermal injection of crotalic PLA(2)s (0.05-0.5 microg/site) in the rat skin resulted in dose-dependent increase in plasma extravascular whereas crotapotin (1 microg/site) failed to affect this response. Co-injection of crotapotin (1 microg/site) did not modify the increased vascular permeability induced by the PLA(2)s (0.05-0.5 microg/site). Previous treatment (30 min) of the animals with cyproheptadine (2 mg/kg, i.p.) markedly reduced PLA(2) (0.5 microg/site)-induced oedema. In rats treated neonatally with capsaicin to deplete neuropeptides, the plasma extravasation induced by all PLA(2)s (0.5 microg/site) was also significantly reduced. Similarly, the tachykinin NK(1) receptor antagonist SR140333 (1nmol/site) significantly reduced the PLA(2)-induced oedema. In addition, the combination of SR140333 with cyproheptadine further reduced the increased plasma extravasation by PLA(2) from C. d. cascavella venom, but not by PLA(2) from C. d. terrificus and C. d. collilineatus venoms. Our results suggest that increase in skin vascular permeability by crotalic PLA(2)s is mediated by activation of sensory C-fibers culminating in the release of substance P, as well as by activation of mast cells which in turn release amines such as histamine and serotonin.41823-

    Characterization Of The Acute Pancreatitis Induced By Secretory Phospholipases A2 In Rats.

    No full text
    Acute pancreatitis (AP) is an inflammatory disease of the pancreas characterized by local inflammation and extrapancreatic effects such as lung injury. Secretory phospholipases A(2) (PLA(2)s) have been implicated in triggering AP, but their exact role to evoke AP is largely unknown. Therefore, we have tested the ability of sPLA(2)s to induce AP in rats, using venom sPLA(2)s with residual or high enzymatic activity (bothropstoxin-II and Naja mocambique mocambique venom PLA(2), respectively), as well as sPLA(2) devoid of catalytic activity (piratoxin-I). The injection of Naja m. mocambique venom PLA(2), bothropstoxin-II or piratoxin-I (300 microg/kg each) into the common bile duct increased significantly the pancreatic plasma extravasation and myeloperoxidase activity. The lung myeloperoxidase and serum amylase were also increased for all groups, although the Naja mocambique mocambique venom PLA(2) induced higher lung myeloperoxidase and serum amylase values, compared with piratoxin-I and/or bothropstoxin-II. Histopathology of pancreas and lungs in piratoxin-I-injected rats showed interstitial oedema in both tissues, and neutrophil infiltration with acinar cell necrosis in pancreas. In conclusion, sPLA(2)s induce AP in rats and the catalytic activity is not essential to induce the local effects in pancreas, although it appears to contribute partly to the remote lung injury.46921-

    Characterization of the mechanisms underlying the inflammatory response to Polistes lanio lanio (paper wasp) venom in mouse dorsal skin

    No full text
    Stings by Polistes wasps can cause life-threatening allergic reactions, pain and inflammation. We examined the changes in microvascular permeability and neutrophil influx caused by the venom of Polistes lanio a paper wasp found in southeastern Brazil. The intradermal injection of wasp venom caused long-lasting paw oedema and dose-dependently increased microvascular permeability in mouse dorsal skin. SR140333, an NK(1) receptor antagonist, markedly inhibited the response, but the NK(2) receptor antagonist SR48968 was ineffective. The oedema was reduced in capsaicin-treated rats, indicating a direct activation of sensory fibres. Dialysis of the venom partially reduced the oedema and the remaining response was further inhibited by SR140333. Mass spectrometric analysis of the venom revealed two peptides (QPPTPPEHRFPGLM and ASEPTALGLPRIFPGLM) with sequence similarities to the C-terminal region of tachykinin-like peptides found in Phoneutria nigniventer spider venom and vertebrates. Wasp venom failed to release histamine from mast cells in vitro and spectrofluorometric assay of the venom revealed a negligible content of histamine in the usual dose of P.l. lanio venom (1 nmol of histamine/7 mu g of venom)that was removed by dialysis. The histamine H(1) receptor antagonist pyrilamine, but not bradykinin B(1) or B(2) receptor antagonists, inhibited venom-induced oedema. In conclusion, P. l. lanio venom induces potent oedema and increases vascular permeability in mice, primarily through activation of tachykinin NK(1) receptors by substance P released from sensory C fibres, which in turn releases histamine from dermal mast cells. This is the first description of a neurovascular mechanism for P. l. lanio venom-mediated inflammation. The extent to which the two tachykinin-like peptides identified here contribute to this neurogenic inflammatory response remains to be elucidated. (c) 2008 Elsevier Ltd. All rights reserved
    corecore