15,775 research outputs found

    Vacuum fluctuations of a scalar field near a reflecting boundary and their effects on the motion of a test particle

    Full text link
    The contribution from quantum vacuum fluctuations of a real massless scalar field to the motion of a test particle that interacts with the field in the presence of a perfectly reflecting flat boundary is here investigated. There is no quantum induced dispersions on the motion of the particle when it is alone in the empty space. However, when a reflecting wall is introduced, dispersions occur with magnitude dependent on how fast the system evolves between the two scenarios. A possible way of implementing this process would be by means of an idealized sudden switching, for which the transition occurs instantaneously. Although the sudden process is a simple and mathematically convenient idealization it brings some divergences to the results, particularly at a time corresponding to a round trip of a light signal between the particle and the wall. It is shown that the use of smooth switching functions, besides regularizing such divergences, enables us to better understand the behavior of the quantum dispersions induced on the motion of the particle. Furthermore, the action of modifying the vacuum state of the system leads to a change in the particle energy that depends on how fast the transition between these states is implemented. Possible implications of these results to the similar case of an electric charge near a perfectly conducting wall are discussed.Comment: 17 pages, 8 figure

    Parallel structurally-symmetric sparse matrix-vector products on multi-core processors

    Full text link
    We consider the problem of developing an efficient multi-threaded implementation of the matrix-vector multiplication algorithm for sparse matrices with structural symmetry. Matrices are stored using the compressed sparse row-column format (CSRC), designed for profiting from the symmetric non-zero pattern observed in global finite element matrices. Unlike classical compressed storage formats, performing the sparse matrix-vector product using the CSRC requires thread-safe access to the destination vector. To avoid race conditions, we have implemented two partitioning strategies. In the first one, each thread allocates an array for storing its contributions, which are later combined in an accumulation step. We analyze how to perform this accumulation in four different ways. The second strategy employs a coloring algorithm for grouping rows that can be concurrently processed by threads. Our results indicate that, although incurring an increase in the working set size, the former approach leads to the best performance improvements for most matrices.Comment: 17 pages, 17 figures, reviewed related work section, fixed typo

    Accelerated Non-Reciprocal Transfer of Energy Around an Exceptional Point

    Get PDF
    We develop perturbative methods to study and control dynamical phenomena related to exceptional points in Non-Hermitian systems. In particular, we show how to find perturbative solutions based on the Magnus expansion that accurately describe the evolution of non-Hermitian systems when encircling an exceptional point. This allows us to use the recently proposed Magnus-based strategy for control to design fast non-reciprocal, topological operations whose fidelity error is orders of magnitude smaller than their much slower adiabatic counterparts
    corecore