22,652 research outputs found
Scale Invariance in a Perturbed Einstein-de Sitter Cosmology
This paper seeks to check the validity of the "apparent fractal conjecture"
(Ribeiro 2001ab: gr-qc/9909093, astro-ph/0104181), which states that the
observed power-law behaviour for the average density of large-scale
distribution of galaxies arises when some observational quantities, selected by
their relevance in average density profile determination, are calculated along
the past light cone. Implementing these conditions in the proposed set of
observational relations profoundly changes the behaviour of many observables in
the standard cosmological models. In particular, the average density becomes
observationally inhomogeneous, even in the spatially homogeneous spacetime of
standard cosmology, change which was already analysed by Ribeiro (1992b, 1993,
1994, 1995: astro-ph/9910145) for a non-perturbed model. Here we derive
observational relations in a perturbed Einstein-de Sitter cosmology by means of
the perturbation scheme proposed by Abdalla and Mohayaee (1999:
astro-ph/9810146), where the scale factor is expanded in power series to yield
perturbative terms. The differential equations derived in this perturbative
context, and other observables necessary in our analysis, are solved
numerically. The results show that our perturbed Einstein-de Sitter cosmology
can be approximately described by a decaying power-law like average density
profile, meaning that the dust distribution of this cosmology has a scaling
behaviour compatible with the power-law profile of the density-distance
correlation observed in the galaxy catalogues. These results show that, in the
context of this work, the apparent fractal conjecture is correct.Comment: 18 pages, 1 figure, LaTeX. Final version (small changes in the figure
plus some references update). Fortran code included with the LaTeX source. To
be published in "Fractals
The Apparent Fractal Conjecture
This short communication advances the hypothesis that the observed fractal
structure of large-scale distribution of galaxies is due to a geometrical
effect, which arises when observational quantities relevant for the
characterization of a cosmological fractal structure are calculated along the
past light cone. If this hypothesis proves, even partially, correct, most, if
not all, objections raised against fractals in cosmology may be solved. For
instance, under this view the standard cosmology has zero average density, as
predicted by an infinite fractal structure, with, at the same time, the
cosmological principle remaining valid. The theoretical results which suggest
this conjecture are reviewed, as well as possible ways of checking its
validity.Comment: 6 pages, LaTeX. Text unchanged. Two references corrected. Contributed
paper presented at the "South Africa Relativistic Cosmology Conference in
Honour of George F. R. Ellis 60th Birthday"; University of Cape Town,
February 1-5, 199
Spatial and observational homogeneities of the galaxy distribution in standard cosmologies
This work discusses the possible empirical verification of the geometrical
concept of homogeneity of the standard relativistic cosmology considering its
various definitions of distance. We study the physical consequences of the
distinction between the usual concept of spatial homogeneity (SH), as defined
by the Cosmological Principle, and the concept of observational homogeneity
(OH), arguing that OH is in principle falsifiable by means of astronomical
observations, whereas verifying SH is only possible indirectly. Simulated
counts of cosmological sources are produced by means of a generalized
number-distance expression that can be specialized to produce either the counts
of the Einstein-de Sitter (EdS) cosmology, which has SH by construction, or
other types of counts, which do, or do not, have OH by construction.
Expressions for observational volumes and differential densities are derived
with the various cosmological distance definitions in the EdS model. Simulated
counts that have OH by construction do not always exhibit SH features. The
reverse situation is also true. Besides, simulated counts with no OH features
at low redshift start showing OH characteristics at high redshift. The comoving
distance seems to be the only distance definition where both SH and OH appear
simultaneously. The results show that observations indicating possible lack of
OH do not necessarily falsify the standard Friedmannian cosmology, meaning that
this cosmology will not necessarily always produce observable homogeneous
densities. The general conclusion is that the use of different cosmological
distances in the characterization of the galaxy distribution lead to
significant ambiguities in reaching conclusions about the behavior of the
large-scale galaxy distribution in the Universe.Comment: 12 pages, 12 figures, LaTeX. Matches the final version sent to the
journal. Accepted for publication in "Astronomy and Astrophysics
Translocating the blood-brain barrier using electrostatics
Copyright © 2012 Ribeiro,Domingues,
Freire,Santos and Castanho. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.Mammalian cell membranes regulate homeostasis, protein activity, and cell signaling. The charge at the membrane surface has been correlated with these key events. Although mammalian cells are known to be slightly anionic, quantitative information on the membrane charge and the importance of electrostatic interactions in pharmacokinetics and pharmacodynamics remain elusive. Recently, we reported for the first time that brain endothelial cells (EC) are more negatively charged than human umbilical cord cells, using zeta-potential measurements by dynamic light scattering. Here, we hypothesize that anionicity is a key feature of the blood-brain barrier (BBB) and contributes to select which compounds cross into the brain. For the sake of comparison, we also studied the membrane surface charge of blood components—red blood cells (RBC), platelets, and peripheral blood mononuclear cells (PBMC).To further quantitatively correlate the negative zeta-potential values with membrane charge density, model membranes with different percentages of anionic lipids were also evaluated. From all the cells tested, brain cell membranes are the most anionic and those having their lipids mostly exposed, which explains why lipophilic cationic compounds are more prone to cross the blood-brain barrier.Fundação para a Ciência e Tecnologia — Ministério da Educação e Ciência (FCT-MEC, Portugal) is acknowledged for funding (including fellowships SFRH/BD/42158/2007 to Marta M.B. Ribeiro, SFRH/BD/41750/2007 to Marco M. Domingues and SFRH/BD/70423/2010 to João M. Freire) and project PTDC/QUI-BIQ/119509/2010. Marie Curie Industry-Academia Partnerships and Pathways (European Commission) is also acknowledged for funding (FP7-PEOPLE-2007-3-1-IAPP, Project 230654)
The Apparent Fractal Conjecture: Scaling Features in Standard Cosmologies
This paper presents an analysis of the smoothness problem in cosmology by
focussing on the ambiguities originated in the simplifying hypotheses aimed at
observationally verifying if the large-scale distribution of galaxies is
homogeneous, and conjecturing that this distribution should follow a fractal
pattern in perturbed standard cosmologies. This is due to a geometrical effect,
appearing when certain types of average densities are calculated along the past
light cone. The paper starts reviewing the argument concerning the possibility
that the galaxy distribution follows such a scaling pattern, and the premises
behind the assumption that the spatial homogeneity of standard cosmology can be
observable. Next, it is argued that to discuss observable homogeneity one needs
to make a clear distinction between local and average relativistic densities,
and showing how the different distance definitions strongly affect them,
leading the various average densities to display asymptotically opposite
behaviours. Then the paper revisits Ribeiro's (1995: astro-ph/9910145) results,
showing that in a fully relativistic treatment some observational average
densities of the flat Friedmann model are not well defined at z ~ 0.1, implying
that at this range average densities behave in a fundamentally different manner
as compared to the linearity of the Hubble law, well valid for z < 1. This
conclusion brings into question the widespread assumption that relativistic
corrections can always be neglected at low z. It is also shown how some key
features of fractal cosmologies can be found in the Friedmann models. In view
of those findings, it is suggested that the so-called contradiction between the
cosmological principle, and the galaxy distribution forming an unlimited
fractal structure, may not exist.Comment: 30 pages, 2 figures, LaTeX. This paper is a follow-up to
gr-qc/9909093. Accepted for publication in "General Relativity and
Gravitation
Differential Density Statistics of Galaxy Distribution and the Luminosity Function
This paper uses data obtained from the galaxy luminosity function (LF) to
calculate two types of radial number densities statistics of the galaxy
distribution as discussed in Ribeiro (2005), namely the differential density
and the integral differential density . By applying the
theory advanced by Ribeiro and Stoeger (2003), which connects the relativistic
cosmology number counts with the astronomically derived LF, the differential
number counts are extracted from the LF and used to calculate both
and with various cosmological distance definitions,
namely the area distance, luminosity distance, galaxy area distance and
redshift distance. LF data are taken from the CNOC2 galaxy redshift survey and
and are calculated for two cosmological models:
Einstein-de Sitter and an , standard
cosmology. The results confirm the strong dependency of both statistics on the
distance definition, as predicted in Ribeiro (2005), as well as showing that
plots of and against the luminosity and redshift
distances indicate that the CNOC2 galaxy distribution follows a power law
pattern for redshifts higher than 0.1. These findings bring support to
Ribeiro's (2005) theoretical proposition that using different cosmological
distance measures in statistical analyses of galaxy surveys can lead to
significant ambiguity in drawing conclusions about the behavior of the observed
large scale distribution of galaxies.Comment: LaTeX, 37 pages, 6 tables, 10 figures. Accepted for publication in
"The Astrophysical Journal
- …