16,660 research outputs found

    Nonlinear gyrofluid computation of edge localised ideal ballooning modes

    Full text link
    Three dimensional electromagnetic gyrofluid simulations of the ideal ballooning mode blowout scenario for tokamak edge localized modes (ELMs) are presented. Special emphasis is placed on energetic diagnosis, examining changes in the growth rate in the linear, overshoot, and decay phases. The saturation process is energy transfer to self generated edge turbulence which exhibits an ion temperature gradient (ITG) mode structure. Convergence in the decay phase is found only if the spectrum reaches the ion gyroradius. The equilibrium is a self consistent background whose evolution is taken into account. Approximately two thirds of the total energy in the edge layer is liberated in the blowout. Parameter dependence with respect to plasma pressure and the ion gyroradius is studied. Despite the violent nature of the short-lived process, the transition to nonlinearity is very similar to that found in generic tokamak edge turbulence.Comment: The following article has been submitted to Physics of Plasmas. After it is published, it will be found at http://pop.aip.org

    Fast gates for ion traps by splitting laser pulses

    Get PDF
    We present a fast phase gate scheme that is experimentally achievable and has an operation time more than two orders of magnitude faster than current experimental schemes for low numbers of pulses. The gate time improves with the number of pulses following an inverse power law. Unlike implemented schemes which excite precise motional sidebands, thus limiting the gate timescale, our scheme excites multiple motional states using discrete ultra-fast pulses.We use beam-splitters to divide pulses into smaller components to overcome limitations due to the finite laser pulse repetition rate. This provides gate times faster than proposed theoretical schemes when we optimize a practical setup

    Entropy and holography constraints for inhomogeneous universes

    Get PDF
    We calculated the entropy of a class of inhomogeneous dust universes. Allowing spherical symmetry, we proposed a holographic principle by reflecting all physical freedoms on the surface of the apparent horizon. In contrast to flat homogeneous counterparts, the principle may break down in some models, though these models are not quite realistic. We refined fractal parabolic solutions to have a reasonable entropy value for the present observable universe and found that the holographic principle always holds in the realistic cases.Comment: 4 pages, revtex style, 3 figures in 8 eps-file

    Dynamical properties across a quantum phase transition in the Lipkin-Meshkov-Glick model

    Full text link
    It is of high interest, in the context of Adiabatic Quantum Computation, to better understand the complex dynamics of a quantum system subject to a time-dependent Hamiltonian, when driven across a quantum phase transition. We present here such a study in the Lipkin-Meshkov-Glick (LMG) model with one variable parameter. We first display numerical results on the dynamical evolution across the LMG quantum phase transition, which clearly shows a pronounced effect of the spectral avoided level crossings. We then derive a phenomenological (classical) transition model, which already shows some closeness to the numerical results. Finally, we show how a simplified quantum transition model can be built which strongly improve the classical approach, and shed light on the physical processes involved in the whole LMG quantum evolution. From our results, we argue that the commonly used description in term of Landau-Zener transitions is not appropriate for our model.Comment: 7 pages, 5 figures; corrected reference

    Confining potential in a color dielectric medium with parallel domain walls

    Get PDF
    We study quark confinement in a system of two parallel domain walls interpolating different color dielectric media. We use the phenomenological approach in which the confinement of quarks appears considering the QCD vacuum as a color dielectric medium. We explore this phenomenon in QCD_2, where the confinement of the color flux between the domain walls manifests, in a scenario where two 0-branes (representing external quark and antiquark) are connected by a QCD string. We obtain solutions of the equations of motion via first-order differential equations. We find a new color confining potential that increases monotonically with the distance between the domain walls.Comment: RevTex4, 5 pages, 1 figure; version to appear in Int. J. Mod. Phys.

    Prototype 9.7 m Schwarzschild-Couder telescope for the Cherenkov Telescope Array: status of the optical system

    Full text link
    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma ray observatory, aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 30 GeV to more than 300 TeV. The 9.7m Schwarzschild-Couder (SC) candidate medium-size telescope for CTA exploits a novel aplanatic two-mirror optical design that provides a large field of view of 8 degrees and substantially improves the off-axis performance giving better angular resolution across all of the field of view with respect to single-mirror telescopes. The realization of the SC optical design implies the challenging production of large aspherical mirrors accompanied by a submillimeter-precision custom alignment system. In this contribution we report on the status of the implementation of the optical system on a prototype 9.7 m SC telescope located at the Fred Lawrence Whipple Observatory in southern Arizona.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan, Korea. All CTA contributions at arXiv:1709.0348

    Influence of temperature fluctuations on plasma turbulence investigations with Langmuir probes

    Full text link
    The reliability of Langmuir probe measurements for plasma-turbulence investigations is studied on GEMR gyro-fluid simulations and compared with results from conditionally sampled I-V characteristics as well as self-emitting probe measurements in the near scrape-off layer of the tokamak ASDEX Upgrade. In this region, simulation and experiment consistently show coherent in-phase fluctuations in density, plasma potential and also in electron temperature. Ion-saturation current measurements turn out to reproduce density fluctuations quite well. Fluctuations in the floating potential, however, are strongly influenced by temperature fluctuations and, hence, are strongly distorted compared to the actual plasma potential. These results suggest that interpreting floating as plasma-potential fluctuations while disregarding temperature effects is not justified near the separatrix of hot fusion plasmas. Here, floating potential measurements lead to corrupted results on the ExB dynamics of turbulent structures in the context of, e.g., turbulent particle and momentum transport or instability identification on the basis of density-potential phase relations
    • …
    corecore