19,299 research outputs found
NoSOCS in SDSS. VI. The Environmental Dependence of AGN in Clusters and Field in the Local Universe
We investigated the variation in the fraction of optical active galactic
nuclei (AGN) hosts with stellar mass, as well as their local and global
environments. Our sample is composed of cluster members and field galaxies at
and we consider only strong AGN. We find a strong variation in the
AGN fraction () with stellar mass. The field population comprises a
higher AGN fraction compared to the global cluster population, especially for
objects with log . Hence, we restricted our analysis to more
massive objects. We detected a smooth variation in the with local
stellar mass density for cluster objects, reaching a plateau in the field
environment. As a function of clustercentric distance we verify that
is roughly constant for R R, but show a steep decline inwards. We
have also verified the dependence of the AGN population on cluster velocity
dispersion, finding a constant behavior for low mass systems ( km s). However, there is a strong decline in
for higher mass clusters ( 700 km s). When comparing the in
clusters with or without substructure we only find different results for
objects at large radii (R R), in the sense that clusters with
substructure present some excess in the AGN fraction. Finally, we have found
that the phase-space distribution of AGN cluster members is significantly
different than other populations. Due to the environmental dependence of
and their phase-space distribution we interpret AGN to be the result
of galaxy interactions, favored in environments where the relative velocities
are low, typical of the field, low mass groups or cluster outskirts.Comment: 11 pages, 10 figures, Accepted to MNRA
Radial Density Statistics of the Galaxy Distribution and the Luminosity Function
This paper discusses a connection between the relativistic number counts of
cosmological sources and the observed galaxy luminosity function (LF).
Observational differential number densities are defined and obtained from
published LF data using such connection. We observe a distortion in the
observational quantities that increases with higher redshift values as compared
to the theoretical predictions. The use of different cosmological distance
measures plays a role in such a distortionComment: 3 pages, 3 figures. Abridged version of arXiv:1201.557
Generalized Chaplygin gas with and the cosmological model
The generalized Chaplygin gas model is characterized by the equation of state
. It is generally stated that the case is equivalent to a model with cosmological constant and dust (). In this work we show that, if this is true for the background equations,
this is not true for the perturbation equations. Hence, the mass spectrum
predicted for both models may differ.Comment: Latex file, 4 pages, 2 figures in eps forma
Mutual information in random Boolean models of regulatory networks
The amount of mutual information contained in time series of two elements
gives a measure of how well their activities are coordinated. In a large,
complex network of interacting elements, such as a genetic regulatory network
within a cell, the average of the mutual information over all pairs is a
global measure of how well the system can coordinate its internal dynamics. We
study this average pairwise mutual information in random Boolean networks
(RBNs) as a function of the distribution of Boolean rules implemented at each
element, assuming that the links in the network are randomly placed. Efficient
numerical methods for calculating show that as the number of network nodes
N approaches infinity, the quantity N exhibits a discontinuity at parameter
values corresponding to critical RBNs. For finite systems it peaks near the
critical value, but slightly in the disordered regime for typical parameter
variations. The source of high values of N is the indirect correlations
between pairs of elements from different long chains with a common starting
point. The contribution from pairs that are directly linked approaches zero for
critical networks and peaks deep in the disordered regime.Comment: 11 pages, 6 figures; Minor revisions for clarity and figure format,
one reference adde
Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth
We report on the effect of substrate temperature (T) on both local structure
and long-wavelength fluctuations of polycrystalline CdTe thin films deposited
on Si(001). A strong T-dependent mound evolution is observed and explained in
terms of the energy barrier to inter-grain diffusion at grain boundaries, as
corroborated by Monte Carlo simulations. This leads to transitions from
uncorrelated growth to a crossover from random-to-correlated growth and
transient anomalous scaling as T increases. Due to these finite-time effects,
we were not able to determine the universality class of the system through the
critical exponents. Nevertheless, we demonstrate that this can be circumvented
by analyzing height, roughness and maximal height distributions, which allow us
to prove that CdTe grows asymptotically according to the Kardar-Parisi-Zhang
(KPZ) equation in a broad range of T. More important, one finds positive
(negative) velocity excess in the growth at low (high) T, indicating that it is
possible to control the KPZ non-linearity by adjusting the temperature.Comment: 6 pages, 5 figure
Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments: Investigating its potential as salinity proxy
“Many authors have contributed to writing this paper. Those listed in the metadata are: the main/contact author, the first listed author and Brunel University author(s). For a full list of the authors, please see the PDF version.”A biometrical analysis of the dinoflagellate cyst Lingulodinium machaerophorum (Deflandre and Cookson 1955) Wall, 1967 in 144 globally distributed surface sediment samples revealed that the average process length is related to summer salinity and temperature at a water depth of 30 m by the equation (salinity/temperature) = (0.078*average process length + 0.534) with R² = 0.69. This relationship can be used to reconstruct palaeosalinities, albeit with caution. The particular ecological window can be associated with known distributions of the corresponding motile stage Lingulodinium polyedrum (Stein) Dodge, 1989. Confocal laser microscopy showed that the average process length is positively related to the average distance between process bases (R²=0.78), and negatively related to the number of processes (R²=0.65). These results document the existence of two end members in cyst formation: one with many short, densely distributed processes and one with a few, long, widely spaced processes, which can be respectively related to low and high salinity/temperature ratios. Obstruction during formation of the cysts causes anomalous distributions of the processes. From a biological perspective, processes function to facilitate sinking of the cysts through clustering
Disorder-induced Spin Gap in the Zigzag Spin-1/2 Chain Cuprate Sr_{0.9}Ca_{0.1}CuO_2
We report a comparative study of 63Cu Nuclear Magnetic Resonance spin lattice
relaxation rates, T_1^{-1}, on undoped SrCuO_2 and Ca doped
Sr_{0.9}Ca_{0.1}CuO_2 spin chain compounds. A temperature independent T_1^{-1}
is observed for SrCuO_2 as expected for an S=1/2 Heisenberg chain.
Surprisingly, we observe an exponential decrease of T_1^{-1} for T < 90,K in
the Ca-doped sample evidencing the opening of a spin gap. The data analysis
within the J_1-J_2 Heisenberg model employing density-matrix renormalization
group calculations suggests an impurity driven small alternation of the
J_2-exchange coupling as a possible cause of the spin gap.Comment: 4 pages, 4 figure
- …