7,818 research outputs found
Transport properties of a two impurity system: a theoretical approach
A system of two interacting cobalt atoms, at varying distances, was studied
in a recent scanning tunneling microscope experiment by Bork et. al.[Nature
Phys. 7, 901 (2011)]. We propose a microscopic model that explains, for all
experimentally analyzed interatomic distances, the physics observed in these
experiments. Our proposal is based on the two-impurity Anderson model, with the
inclusion of a two-path geometry for charge transport. This many-body system is
treated in the finite-U slave boson mean-field approximation and the
logarithmic-discretization embedded-cluster approximation. We physically
characterize the different charge transport regimes of this system at various
interatomic distances and show that, as in the experiments, the features
observed in the transport properties depend on the presence of two impurities
but also on the existence of two conducting channels for electron transport. We
interpret the splitting observed in the conductance as the result of the
hybridization of the two Kondo resonances associated with each impurity.Comment: 5 pages, 5 figure
- …