122 research outputs found

    Differential protection of neuromuscular sensory and motor axons and their endings in Wld(S) mutant mice

    Get PDF
    Orthograde Wallerian degeneration normally brings about fragmentation of peripheral nerve axons and their sensory or motor endings within 24-48 h in mice. However, neuronal expression of the chimaeric, Wld(S) gene mutation extends survival of functioning axons and their distal endings for up to 3 weeks after nerve section. Here we studied the pattern and rate of degeneration of sensory axons and their annulospiral endings in deep lumbrical muscles of Wld(S) mice, and compared these with motor axons and their terminals, using neurone-specific transgenic expression of the fluorescent proteins yellow fluorescent protein (YFP) or cyan fluorescent protein (CFP) as morphological reporters. Surprisingly, sensory endings were preserved for up to 20 days, at least twice as long as the most resilient motor nerve terminals. Protection of sensory endings and axons was also much less sensitive to Wld(S) gene-copy number or age than motor axons and their endings. Protection of γ-motor axons and their terminals innervating the juxtaequatorial and polar regions of the spindles was less than sensory axons but greater than α-motor axons. The differences between sensory and motor axon protection persisted in electrically silent, organotypic nerve-explant cultures suggesting that residual axonal activity does not contribute to the sensory-motor axon differences in vivo. Quantitative, Wld(S)-specific immunostaining of dorsal root ganglion (DRG) neurones and motor neurones in homozygous Wld(S) mice suggested that the nuclei of large DRG neurones contain about 2.4 times as much Wld(S) protein as motor neurones. By contrast, nuclear fluorescence of DRG neurones in homozygotes was only 1.5 times brighter than in heterozygotes stained under identical conditions. Thus, differences in axonal or synaptic protection within the same Wld(S) mouse may most simply be explained by differences in expression level of Wld(S) protein between neurones. Mimicry of Wld(S)-induced protection may also have applications in treatment of neurotoxicity or peripheral neuropathies in which the integrity of sensory endings may be especially implicated

    ‘Calcium bombs' as harbingers of synaptic pathology and their mitigation by magnesium at murine neuromuscular junctions

    Get PDF
    Excitotoxicity is thought to be an important factor in the onset and progression of amyotrophic lateral sclerosis (ALS). Evidence from human and animal studies also indicates that early signs of ALS include degeneration of motor nerve terminals at neuromuscular junctions (NMJs), before degeneration of motor neuron cell bodies. Here we used a model of excitotoxicity at NMJs in isolated mouse muscle, utilizing the organophosphorus (OP) compound omethoate, which inhibits acetylcholinesterase activity. Acute exposure to omethoate (100 ÎŒM) induced prolonged motor endplate contractures in response to brief tetanic nerve stimulation at 20–50 Hz. In some muscle fibers, Fluo-4 fluorescence showed association of these contractures with explosive increases in Ca(2+) (“calcium bombs”) localized to motor endplates. Calcium bombs were strongly and selectively mitigated by increasing Mg(2+) concentration in the bathing medium from 1 to 5 mM. Overnight culture of nerve-muscle preparations from Wld(S) mice in omethoate or other OP insecticide components and their metabolites (dimethoate, cyclohexanone, and cyclohexanol) induced degeneration of NMJs. This degeneration was also strongly mitigated by increasing [Mg(2+)] from 1 to 5 mM. Thus, equivalent increases in extracellular [Mg(2+)] mitigated both post-synaptic calcium bombs and degeneration of NMJs. The data support a link between Ca(2+) and excitotoxicity at NMJs and suggest that elevating extracellular [Mg(2+)] could be an effective intervention in treatment of synaptic pathology induced by excitotoxic triggers

    Donepezil inhibits neuromuscular junctional acetylcholinesterase and enhances synaptic transmission and function in isolated skeletal muscle

    Get PDF
    BACKGROUND AND PURPOSE: Donepezil, a piperidine inhibitor of acetylcholinesterase (AChE) prescribed for treatment of Alzheimer's disease, has adverse neuromuscular effects in humans, including requirement for higher concentrations of non‐depolarising neuromuscular blockers during surgery. Here, we examined the effects of donepezil on synaptic transmission at neuromuscular junctions (NMJs) in isolated nerve‐muscle preparations from mice. EXPERIMENTAL APPROACH: We measured effects of therapeutic concentrations of donepezil (10 nM to 1 ΌM) on AChE enzymic activity, muscle force responses to repetitive stimulation, and spontaneous and evoked endplate potentials (EPPs) recorded intracellularly from flexor digitorum brevis muscles from CD01 or C57BlWld(S) mice. KEY RESULTS: Donepezil inhibited muscle AChE with an approximate IC(50) of 30 nM. Tetanic stimulation in sub‐micromolar concentrations of donepezil prolonged post‐tetanic muscle contractions. Preliminary Fluo4‐imaging indicated an association of these contractions with an increase and slow decay of intracellular Ca(2+) transients at motor endplates. Donepezil prolonged spontaneous miniature EPP (MEPP) decay time constants by about 65% and extended evoked EPP duration almost threefold. The mean frequency of spontaneous MEPPs was unaffected but the incidence of ‘giant’ MEPPs (gMEPPs), some exceeding 10 mV in amplitude, was increased. Neither mean MEPP amplitude (excluding gMEPPs), mean EPP amplitude, quantal content or synaptic depression during repetitive stimulation were significantly altered by concentrations of donepezil up to 1 ΌM. CONCLUSION AND IMPLICATIONS: Adverse neuromuscular signs associated with donepezil therapy, including relative insensitivity to neuromuscular blockers, are probably due to inhibition of AChE at NMJs, prolonging the action of ACh on postsynaptic nicotinic acetylcholine receptors but without substantively impairing evoked ACh release

    “Calcium bombs” as harbingers of synaptic pathology and their mitigation by magnesium at murine neuromuscular junctions

    Get PDF
    Excitotoxicity is thought to be an important factor in the onset and progression of amyotrophic lateral sclerosis (ALS). Evidence from human and animal studies also indicates that early signs of ALS include degeneration of motor nerve terminals at neuromuscular junctions (NMJs), before degeneration of motor neuron cell bodies. Here we used a model of excitotoxicity at NMJs in isolated mouse muscle, utilizing the organophosphorus (OP) compound omethoate, which inhibits acetylcholinesterase activity. Acute exposure to omethoate (100 ÎŒM) induced prolonged motor endplate contractures in response to brief tetanic nerve stimulation at 20–50 Hz. In some muscle fibers, Fluo-4 fluorescence showed association of these contractures with explosive increases in Ca2+ (“calcium bombs”) localized to motor endplates. Calcium bombs were strongly and selectively mitigated by increasing Mg2+ concentration in the bathing medium from 1 to 5 mM. Overnight culture of nerve-muscle preparations from WldS mice in omethoate or other OP insecticide components and their metabolites (dimethoate, cyclohexanone, and cyclohexanol) induced degeneration of NMJs. This degeneration was also strongly mitigated by increasing [Mg2+] from 1 to 5 mM. Thus, equivalent increases in extracellular [Mg2+] mitigated both post-synaptic calcium bombs and degeneration of NMJs. The data support a link between Ca2+ and excitotoxicity at NMJs and suggest that elevating extracellular [Mg2+] could be an effective intervention in treatment of synaptic pathology induced by excitotoxic triggers

    The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (Wld(S)) nerves

    Get PDF
    BACKGROUND: The progressive nature of Wallerian degeneration has long been controversial. Conflicting reports that distal stumps of injured axons degenerate anterogradely, retrogradely, or simultaneously are based on statistical observations at discontinuous locations within the nerve, without observing any single axon at two distant points. As axon degeneration is asynchronous, there are clear advantages to longitudinal studies of individual degenerating axons. We recently validated the study of Wallerian degeneration using yellow fluorescent protein (YFP) in a small, representative population of axons, which greatly improves longitudinal imaging. Here, we apply this method to study the progressive nature of Wallerian degeneration in both wild-type and slow Wallerian degeneration (Wld(S)) mutant mice. RESULTS: In wild-type nerves, we directly observed partially fragmented axons (average 5.3%) among a majority of fully intact or degenerated axons 37–42 h after transection and 40–44 h after crush injury. Axons exist in this state only transiently, probably for less than one hour. Surprisingly, axons degenerated anterogradely after transection but retrogradely after a crush, but in both cases a sharp boundary separated intact and fragmented regions of individual axons, indicating that Wallerian degeneration progresses as a wave sequentially affecting adjacent regions of the axon. In contrast, most or all Wld(S )axons were partially fragmented 15–25 days after nerve lesion, Wld(S )axons degenerated anterogradely independent of lesion type, and signs of degeneration increased gradually along the nerve instead of abruptly. Furthermore, the first signs of degeneration were short constrictions, not complete breaks. CONCLUSIONS: We conclude that Wallerian degeneration progresses rapidly along individual wild-type axons after a heterogeneous latent phase. The speed of progression and its ability to travel in either direction challenges earlier models in which clearance of trophic or regulatory factors by axonal transport triggers degeneration. Wld(S )axons, once they finally degenerate, do so by a fundamentally different mechanism, indicated by differences in the rate, direction and abruptness of progression, and by different early morphological signs of degeneration. These observations suggest that Wld(S )axons undergo a slow anterograde decay as axonal components are gradually depleted, and do not simply follow the degeneration pathway of wild-type axons at a slower rate

    Effect of Limb Lengthening on Internodal Length and Conduction Velocity of Peripheral Nerve

    Get PDF
    The influences of axon diameter, myelin thickness, and internodal length on the velocity of conduction of peripheral nerve action potentials are unclear. Previous studies have demonstrated a strong dependence of conduction velocity on internodal length. However, a theoretical analysis has suggested that this relationship may be lost above a nodal separation of ∌0.6 mm. Here we measured nerve conduction velocities in a rabbit model of limb lengthening that produced compensatory increases in peripheral nerve growth. Divided tibial bones in one hindlimb were gradually lengthened at 0.7 mm per day using an external frame attached to the bone. This was associated with a significant increase (33%) of internodal length (0.95–1.3 mm) in axons of the tibial nerve that varied in proportion to the mechanical strain in the nerve of the lengthened limb. Axonal diameter, myelin thickness, and g-ratios were not significantly altered by limb lengthening. Despite the substantial increase in internodal length, no significant change was detected in conduction velocity (∌43 m/s) measured either in vivo or in isolated tibial nerves. The results demonstrate that the internode remains plastic in the adult but that increases in internodal length of myelinated adult nerve axons do not result in either deficiency or proportionate increases in their conduction velocity and support the view that the internodal lengths of nerves reach a plateau beyond which their conduction velocities are no longer sensitive to increases in internodal length

    Design of a novel quantitative PCR (QPCR)-based protocol for genotyping mice carrying the neuroprotective Wallerian degeneration slow (Wlds) gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mice carrying the spontaneous genetic mutation known as Wallerian degeneration slow (<it>Wld</it><sup><it>s</it></sup>) have a unique neuroprotective phenotype, where axonal and synaptic compartments of neurons are protected from degeneration following a wide variety of physical, toxic and inherited disease-inducing stimuli. This remarkable phenotype has been shown to delay onset and progression in several mouse models of neurodegenerative disease, suggesting that <it>Wld</it><sup><it>s</it></sup>-mediated neuroprotection may assist in the identification of novel therapeutic targets. As a result, cross-breeding of <it>Wld</it><sup><it>s </it></sup>mice with mouse models of neurodegenerative diseases is used increasingly to understand the roles of axon and synapse degeneration in disease. However, the phenotype shows strong gene-dose dependence so it is important to distinguish offspring that are homozygous or heterozygous for the mutation. Since the <it>Wld</it><sup><it>s </it></sup>mutation comprises a triplication of a region already present in the mouse genome, the most stringent way to quantify the number of mutant <it>Wld</it><sup><it>s </it></sup>alleles is using copy number. Current approaches to genotype <it>Wld</it><sup><it>s </it></sup>mice are based on either Southern blots or pulsed field gel electrophoresis, neither of which are as rapid or efficient as quantitative PCR (QPCR).</p> <p>Results</p> <p>We have developed a rapid, robust and efficient genotyping method for <it>Wld</it><sup><it>s </it></sup>using QPCR. This approach differentiates, based on copy number, homozygous and heterozygous <it>Wld</it><sup><it>s </it></sup>mice from wild-type mice and each other. We show that this approach can be used to genotype mice carrying the spontaneous <it>Wld</it><sup><it>s </it></sup>mutation as well as animals expressing the <it>Wld</it><sup><it>s </it></sup>transgene.</p> <p>Conclusion</p> <p>We have developed a QPCR genotyping method that permits rapid and effective genotyping of <it>Wld</it><sup><it>s </it></sup>copy number. This technique will be of particular benefit in studies where <it>Wld</it><sup><it>s </it></sup>mice are cross-bred with other mouse models of neurodegenerative disease in order to understand the neuroprotective processes conferred by the <it>Wld</it><sup><it>s </it></sup>mutation.</p
    • 

    corecore