77 research outputs found

    5-Hydroxy-3-(4-hydroxyphenyl)-8,8-dimethyl-6- (3-methylbut-2-enyl)pyrano[2,3-h]chromen-4-one

    Get PDF
    Natural and semi-synthetic compounds are being studied as novel phosphodiesterase 5 (PDE5) inhibitors for the treatment of erectile dysfunction, pulmonary hypertension, and lower urinary symptoms. Maclura pomifera is a source of flavonoids, one of the main classes of molecules investigated for these purposes. The extraction of the natural isoflavone osajin and its modification to obtain a semi-synthetic derivative are described in this short note. 1H and 13C-nuclear magnetic resonance spectroscopy (NMR), mass spectrometry, high-performance liquid chromatography (HPLC) and spectroscopic characterization of the title compound are also hereby provided. Two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY) NMR, supported by in silico conformational studies, was used to achieve a complete assignment of the proton signals, assessing the correct chemical structure of the compound. Heteronuclear single quantum coherence spectroscopy (HSQC) and heteronuclear multiple bond correlation (HMBC) NMR experiments were performed to assign 13C chemical shifts. Calculated chemical properties and preliminary in silico docking suggest that this molecule might be a promising candidate as PDE5 inhibitor

    Psychiatric Disorders and Oxidative Injury: Antioxidant Effects of Zolpidem Therapy disclosed In Silico

    Get PDF
    Zolpidem (N,N-Dimethyl-2-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]acetamide) is a well-known drug for the treatment of sleeping disorders. Recent literature reports on positive effects of zolpidem therapy on improving renal damage after cisplatin and on reducing akinesia without sleep induction. This has been ascribed to the antioxidant and neuroprotective capacity of this molecule, and tentatively explained according to a generic structural similarity between zolpidem and melatonin. In this work, we investigate in silico the antioxidant potential of zolpidem as scavenger of five ROSs, acting via hydrogen atom transfer (HAT) mechanism; computational methodologies based on density functional theory are employed. For completeness, the analysis is extended to six metabolites. Thermodynamic and kinetic results disclose that indeed zolpidem is an efficient radical scavenger, similarly to melatonin and Trolox, supporting the biomedical evidence that the antioxidant potential of zolpidem therapy may have a beneficial effect against oxidative injury, which is emerging as an important etiopathogenesis in numerous severe diseases, including psychiatric disorders

    Targeting the Major Groove of the Palindromic d(GGCGCC)2 Sequence by Oligopeptide Derivatives of Anthraquinone Intercalators

    Full text link
    GC-rich sequences are recurring motifs in oncogenes and retroviruses, and could be targeted by non-covalent major-groove therapeutic ligands. We considered the palindromic sequence d(G1G2C3G4C5C6)2, and designed several oligopeptide derivatives of the anti-cancer intercalator mitoxantrone. The stability of their complexes with a 18-mer oligonucleotide encompassing this sequence in its center was validated using polarizable molecular dynamics. We report the most salient structural features of two novel compounds, having a dialkylammonium group as a side-chain on both arms. The anthraquinone ring is intercalated in the central d(CpG)2 sequence with its long axis perpendicular to that of the two base-pairs. On each strand, this enables each ammonium group to bind in-register to O6/N7 of the two facing G bases upstream. We subsequently designed tris-intercalating derivatives, each dialkylammonium substituted with a connector to an N9-aminoacridine intercalator extending our target range from six- to a ten-base pair palindromic sequence, d(C1G2G3G4C5G6C7C8C9G10)2. The structural features of the complex of the most promising derivative are reported. The present design strategy paves the way for designing intercalator-oligopeptide derivatives with an even higher selectivity, targeting an increased number of DNA bases, going beyond ten

    Targeted activation of the SHP-1/PP2A signaling axis elicits apoptosis of chronic lymphocytic leukemia cells

    Get PDF
    Lyn, a member of the Src family of kinases, is a key factor in the dys-regulation of survival and apoptotic pathways of malignant B cells in chronic lymphocytic leukemia. One of the effects of Lyn's action is spatial and functional segregation of the tyrosine phosphatase SHP-1 into two pools, one beneath the plasma membrane in an active state promoting pro-survival signals, the other in the cytosol in an inhibited conformation and unable to counter the elevated level of cytosolic tyrosine phosphorylation. We herein show that SHP-1 activity can be elicited directly by nintedanib, an agent also known as a triple angiokinase inhibitor, circumventing the phospho-S591-dependent inhibition of the phosphatase, leading to the dephosphorylation of pro-apoptotic players such as procaspase-8 and serine/threonine phosphatase 2A, eventually triggering apoptosis. Furthermore, the activation of PP2A by using MP07-66, a novel FTY720 analog, stimulated SHP-1 activity via dephosphorylation of phospho-S591, which unveiled the existence of a positive feedback signaling loop involving the two phosphatases. In addition to providing further insights into the molecular basis of this disease, our findings indicate that the PP2A/SHP-1 axis may emerge as an attractive, novel target for the development of alternative strategies in the treatment of chronic lymphocytic leukemia

    Sintesi di un isostero del 3,5-dimetil-6-fenil-8-(trifluorometil)-5,6-diidropirazolo[3,4-f][1,2,3,5]tetrazepin-4(3H)-one (CF3-TZP) con potenziale attività biologica

    Get PDF
    In un precedente lavoro abbiamo mostrato i risultati relativi alla sintesi ed all’attività biologica del CF3-TZP 1[1] (Figura 1). Le attività antiproliferativa e apoptotica del composto 1 sono state testate su differenti linee cellulari, HL60 sensibili, HL60-R (MDR), K562 e K562-R (resistenti al Gleevec®), mostrando un profilo di attività biologica similare sulle cellule sensibili e resistenti nel range di 21-40 µM per l’IC50 e 36-62 µM per l’AC50. L’analisi citofluorimetrica sulle K562 sensibili ha indicato che il composto 1 determina un arresto dose-dipendente del ciclo cellulare in fase G0-G1 nelle prime 24 h di trattamento, mentre nelle successive 24 h si è notato una riduzione del picco G0-G1 ed un incremento del picco apoptotico subG0-G1. Gli incoraggianti risultati biologici ci hanno spinto a continuare gli studi su questa tipologia di molecole sintetizzando l’isostero 2 (Figura 1) attraverso una lunga via di sintesi (15 steps). Attualmente, sono in corso i saggi biologici per valutare le attività antiproliferativa e apoptotica. Bibliografia 1 Maggio, B.; et al, Eur. J. Med. Chem., 2008, 43, 120

    Progettazione e sintesi di nuovi derivati 4-chinazolinonici potenziali inibitori della diidrofolato reduttasi

    Get PDF
    I chinazolinoni sono composti eterociclici azotati che, insieme alle chinazoline, rappresentano degli importanti farmacofori in possesso di un ampio spettro di proprietà biologiche tra cui quella antitumorale. Recentemente sono stati riportati in letteratura dei derivati 4-chinazolinonici in grado di inibire in vitro l’enzima diidrofolato reduttasi (DHFR) con IC50 comprese tra 0.4 e 1.0 µM [1]. Allo scopo di progettare la sintesi di nuovi potenziali inibitori della DHFR, è stato condotto uno studio di modellistica molecolare considerando tale enzima come biotarget. Tale studio ha portato alla selezione di 42 nuovi derivati 4-chinazolinonici (Figura 1). Attualmente, sono stati sintetizzati 20 dei 42 nuovi derivati 4-chinazolinonici, che sono stati saggiati preliminarmente sulla linea cellulare K562. Il derivato più attivo ha mostrato una IC50 di 18 µM. Sono in corso saggi enzimatici per valutare in vitro l’inibizione dell’enzima DHFR. Bibliografia 1 Al-Omary F.A.M.; et al, Bioorganic & Medicinal Chemistry, 2010, 18, 2849

    Pirrolomicine che inibiscono la Sortasi A nelle infezioni sostenute da batteri Gram-positivi

    Get PDF
    La Sortasi A è un enzima di membrana responsabile dell’ancoraggio delle proteine di superficie sulla parete cellulare dei batteri Gram-positivi. Essa è considerata un interessante obiettivo per lo sviluppo di nuovi farmaci anti-infettivi che mirino ad interferire con importanti meccanismi di virulenza Gram-positivi. In un precedente lavoro abbiamo indagato sull’attività antistafilococcica e antibiofilm di alcune Pirrolomicine naturali e sintetiche, composti pirrolici polialogenati attivi su patogeni Gram-positivi, alle concentrazioni di 1.5 e 0.045 µg/mL. I risultati biologici hanno mostrato percentuali di inibizione di biofilm comprese tra 50-80% [1]. Allo scopo di indagare sul loro meccanismo d’azione sono stati condotti studi di modellistica molecolare e saggi di inibizione in vitro sull’enzima Sortasi A (Figura 1). I risultati ottenuti indicano che la Sortasi A potrebbe essere il bersaglio sul quale le Pirrolomicine agiscono, con IC50 comprese tra 130-250 µM, nell’inibizione della formazione di biofilm. Bibliografia 1 Schillaci, D.; et al, Biofouling, 2010, 26, 433

    Lyn sustains oncogenic signaling in chronic lymphocytic leukemia by strengthening SET-mediated inhibition of PP2A.

    Get PDF
    Aberrant protein kinase activities, and the consequent dramatic increase of Ser/Thr and -Tyr phosphorylation, promote the deregulation of the survival pathways in chronic lymphocytic leukemia (CLL), which is crucial to the pathogenesis and progression of the disease. In this study, we show that the tumor suppressor Protein Phosphatase 2A (PP2A), one of the major Ser/Thr phosphatase, is in an inhibited form due to the synergistic contribution of two events, the interaction with its physiological inhibitor SET and the phosphorylation of Y307 of the catalytic subunit of PP2A. The latter event is mediated by Lyn, a Src family kinase previously found to be overexpressed, delocalized and constitutively active in CLL cells. This Lyn/PP2A axis accounts for the persistent high level of phosphorylation of the phosphatase's targets and represents a key connection linking phosphotyrosine- and phosphoserine/threonine-mediated oncogenic signals. The data herein presented show that the disruption of the SET/PP2A complex by a novel FTY720-analogue (MP07-66) devoid of immunosuppressive effects leads to the reactivation of PP2A, which in turn triggers apoptosis of CLL cells. When used in combination with SFK inhibitors, the action of MP07-66 is synergistically amplified, providing a new option in the therapeutic strategy for CLL patients

    Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro

    Get PDF
    Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence.Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy –performed in a large and diverse chemolibrary– complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening.Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC50 ≤ 25 μM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC50 = 0.12–20 μM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50 7–45 μM).Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known “garbage in, garbage out” machine learning principle
    corecore