8 research outputs found

    Aspirin for Primary Prevention of Cardiovascular Events in Relation to Lipoprotein(a) Genotypes

    No full text
    Background: The role of aspirin in reducing lipoprotein(a)-mediated atherothrombotic events in primary prevention is not established. Objectives: This study sought to assess whether low-dose aspirin benefits individuals with elevated plasma lipoprotein(a)-associated genotypes in the setting of primary prevention. METHODS The study analyzed 12,815 genotyped individuals $70 years of age of European ancestry and without prior cardiovascular disease events enrolled in the ASPREE (ASPirin in Reducing Events in the Elderly) randomized controlled trial of 100 mg/d aspirin. We defined lipoprotein(a)-associated genotypes using rs3798220-C carrier status and quintiles of a lipoprotein(a) genomic risk score (LPA-GRS). We tested for interaction between genotypes and aspirin allocation in Cox proportional hazards models for incidence of major adverse cardiovascular events (MACE) and clinically significant bleeding. We also examined associations in the aspirin and placebo arms of the trial separately. Results: During a median 4.7 years (IQR: 3.6-5.7 years) of follow-up, 435 MACE occurred, with an interaction observed between rs3798220-C and aspirin allocation (P ¼ 0.049). rs3798220-C carrier status was associated with increased MACE risk in the placebo group (HR: 1.90; 95% CI: 1.11-3.24) but not in the aspirin group (HR: 0.54; 95% CI: 0.17- 1.70). High LPA-GRS (vs low) was associated with increased MACE risk in the placebo group (HR: 1.70; 95% CI: 1.14-2.55), with risk attenuated in the aspirin group (HR: 1.41; 95% CI: 0.90-2.23), but the interaction was not statistically significant. In all participants, aspirin reduced MACE by 1.7 events per 1,000 person-years and increased clinically significant bleeding by 1.7 events per 1,000 person-years. However, in the rs3798220-C and high LPA-GRS subgroups, aspirin reduced MACE by 11.4 and 3.3 events per 1,000 person-years respectively, without significantly increased bleeding risk.Paul Lacaze, Andrew Bakshi, Moeen Riaz, Galina Polekhina, Alice Owen, Harpreet S. Bhatia, Pradeep Natarajan, Rory Wolfe, Lawrence Beilin, Stephen J. Nicholls, Gerald F. Watts, John J. McNeil, Andrew M. Tonkin, Sotirios Tsimika

    Familial hypercholesterolemia in a healthy elderly population

    No full text
    Abstract not availablePaul Lacaze, Robert Sebra, Moeen Riaz, Amanda J. Hooper, Jane Tiller, Andrew Baksh ... et al

    Spatial, temporal, and demographic patterns in prevalence of chewing tobacco use in 204 countries and territories, 1990-2019: A systematic analysis from the Global Burden of Disease Study 2019

    No full text
    Background Chewing tobacco and other types of smokeless tobacco use have had less attention from the global health community than smoked tobacco use. However, the practice is popular in many parts of the world and has been linked to several adverse health outcomes. Understanding trends in prevalence with age, over time, and by location and sex is important for policy setting and in relation to monitoring and assessing commitment to the WHO Framework Convention on Tobacco Control. Methods We estimated prevalence of chewing tobacco use as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 using a modelling strategy that used information on multiple types of smokeless tobacco products. We generated a time series of prevalence of chewing tobacco use among individuals aged 15 years and older from 1990 to 2019 in 204 countries and territories, including age-sex specific estimates. We also compared these trends to those of smoked tobacco over the same time period. Findings In 2019, 273·9 million (95% uncertainty interval 258·5 to 290·9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4·72% (4·46 to 5·01). 228·2 million (213·6 to 244·7; 83·29% [82·15 to 84·42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15–19 years was over 10% in seven locations in 2019. Although global age-standardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: –1·21% [–1·26 to –1·16]), similar progress was not observed for chewing tobacco (0·46% [0·13 to 0·79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (−0·94% [–1·72 to –0·14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence

    Spatial, temporal, and demographic patterns in prevalence of chewing tobacco use in 204 countries and territories, 1990�2019: a systematic analysis from the Global Burden of Disease Study 2019

    No full text
    Background: Chewing tobacco and other types of smokeless tobacco use have had less attention from the global health community than smoked tobacco use. However, the practice is popular in many parts of the world and has been linked to several adverse health outcomes. Understanding trends in prevalence with age, over time, and by location and sex is important for policy setting and in relation to monitoring and assessing commitment to the WHO Framework Convention on Tobacco Control. Methods: We estimated prevalence of chewing tobacco use as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 using a modelling strategy that used information on multiple types of smokeless tobacco products. We generated a time series of prevalence of chewing tobacco use among individuals aged 15 years and older from 1990 to 2019 in 204 countries and territories, including age-sex specific estimates. We also compared these trends to those of smoked tobacco over the same time period. Findings: In 2019, 273·9 million (95 uncertainty interval 258·5 to 290·9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4·72 (4·46 to 5·01). 228·2 million (213·6 to 244·7; 83·29 82·15 to 84·42) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15�19 years was over 10% in seven locations in 2019. Although global age-standardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: �1·21% �1·26 to �1·16), similar progress was not observed for chewing tobacco (0·46% 0·13 to 0·79). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (�0·94% �1·72 to �0·14), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Interpretation: Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Funding: Bloomberg Philanthropies and the Bill & Melinda Gates Foundation. © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore