41 research outputs found
Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management
Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid) environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max) -wheat (Triticum aestivum) crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings clearly indicate that owing to higher biological activity, organic systems possess equal capabilities of supplying P for crop growth as are conventional systems with inputs of mineral P fertilizers
Selected mitochondrial DNA landscapes activate the SIRT3 axis of the UPR(mt) to promote metastasis
By causing mitochondrial DNA (mtDNA) mutations and oxidation of mitochondrial proteins, reactive oxygen species (ROS) leads to perturbations in mitochondrial proteostasis. Several studies have linked mtDNA mutations to metastasis of cancer cells but the nature of the mtDNA species involved remains unclear. Our data suggests that no common mtDNA mutation identifies metastatic cells; rather the metastatic potential of several ROS-generating mutations is largely determined by their mtDNA genomic landscapes, which can act either as an enhancer or repressor of metastasis. However, mtDNA landscapes of all metastatic cells are characterized by activation of the SIRT/FOXO/SOD2 axis of the mitochondrial unfolded protein response (UPR(mt)). The UPR(mt) promotes a complex transcription program ultimately increasing mitochondrial integrity and fitness in response to oxidative proteotoxic stress. Using SOD2 as a surrogate marker of the UPR(mt), we found that in primary breast cancers, SOD2 is significantly increased in metastatic lesions. We propose that the ability of selected mtDNA species to activate the UPR(mt) is a process that is exploited by cancer cells to maintain mitochondrial fitness and facilitate metastasis.Oncogene advance online publication, 3 April 2017; doi:10.1038/onc.2017.52
Resistance of Echinochloa crus-galli
Three Echinochloa crus-galli (barnyardgrass) populations from rice fields in Arkansas (AR1 and AR2) and Mississippi (MS1), USA, were recently confirmed to be resistant to imazethapyr. Experiments were conducted to characterize cross-resistance to acetolactate synthase- (ALS-) inhibiting herbicides and determine if malathion, a known cytochrome P450 monooxygenase (CYP) inhibitor, would overcome resistance. The AR1 and MS1 populations were cross-resistant to bispyribac-sodium; however, AR2 was sensitive to bispyribac-sodium. The AR1, AR2, and MS1 populations were >94, >94, and 3.3 times, respectively, more resistant to imazamox; >94, 30, and 9.4 times, respectively, more resistant to penoxsulam; and 15, 0.9, and 7.2 times, respectively, more resistant to bispyribac-sodium compared to a susceptible population. Addition of malathion to penoxsulam reduced dry weight of all populations and increased mortality of AR2 and MS1 populations compared to penoxsulam alone. Addition of malathion to imazethapyr and bispyribac-sodium increased the mortality of MS1 population in mixture with imazethapyr and AR1 population in mixture with bispyribac-sodium compared to treatments with imazethapyr and bispyribac-sodium applied alone. Synergism of ALS-inhibiting herbicides with malathion indicates increased herbicide degradation by CYP as partial mechanism of resistance to penoxsulam in all resistant populations and probably to imazethapyr in MS1 and bispyribac-sodium in AR1 populations
Not Available
Not AvailableCowpea (Vigna unguiculata (L.) Walp.) is one such legume that can facilitate
achieving sustainable nutrition and climate change goals. Assessing nutritional
traits conventionally can be laborious and time-consuming. NIRS is a
technique used to rapidly determine biochemical parameters for large
germplasm. NIRS prediction models were developed to assess protein, starch,
TDF, phenols, and phytic acid based on MPLS regression. Higher RSQexternal
values such as 0.903, 0.997, 0.901, 0.706, and 0.955 were obtained for protein,
starch, TDF, phenols, and phytic acid respectively. Models for all the traits
displayed RPD values of >2.5 except phenols and low SEP indicating the
excellent prediction of models. For all the traits worked, p-value ≥ 0.05
implied the accuracy and reliability score >0.8 (except phenol) ensured
the applicability of the models. These prediction models will facilitate high
throughput screening of large cowpea germplasm in a non-destructive way
and the selection of desirable chemotypes in any genetic background with
huge application in cowpea crop improvement programs across the worldThis study was supported by funding from Department of Biotechnology, Government of India under project on minor pulses (No. BT/Ag/Network/Pulse-I /2017-18, date:187 24th Oct 2018). In-house project on Biochemical evaluation of Field and vegetable crops. DBT funded and an international collaborative project Consumption of Resilient Orphan Crops & Products for Healthier Diets (CROPS4HD) which is co funded by the Swiss Agency for Development and Cooperation, Global Programme Food Security (SDC GPFS) and executed in India through FiBL (Research Institute of Organic Agriculture), and Alliance of Bioversity and CIAT with ICAR-NBPGR as a lead partner. Junior Research Fellowship granted to SP by ICAR Research Grant No. 2(9)/2018-HRD dated 30th October 2018
Echinochloa crus-galli Populations to Acetolactate Synthase-Inhibiting Herbicides
Three Echinochloa crus-galli (barnyardgrass) populations from rice fields in Arkansas (AR1 and AR2) and Mississippi (MS1), USA, were recently confirmed to be resistant to imazethapyr. Experiments were conducted to characterize cross-resistance to acetolactate synthase-(ALS-) inhibiting herbicides and determine if malathion, a known cytochrome P450 monooxygenase (CYP) inhibitor, would overcome resistance. The AR1 and MS1 populations were cross-resistant to bispyribac-sodium; however, AR2 was sensitive to bispyribac-sodium. The AR1, AR2, and MS1 populations were >94, >94, and 3.3 times, respectively, more resistant to imazamox; >94, 30, and 9.4 times, respectively, more resistant to penoxsulam; and 15, 0.9, and 7.2 times, respectively, more resistant to bispyribac-sodium compared to a susceptible population. Addition of malathion to penoxsulam reduced dry weight of all populations and increased mortality of AR2 and MS1 populations compared to penoxsulam alone. Addition of malathion to imazethapyr and bispyribac-sodium increased the mortality of MS1 population in mixture with imazethapyr and AR1 population in mixture with bispyribac-sodium compared to treatments with imazethapyr and bispyribac-sodium applied alone. Synergism of ALS-inhibiting herbicides with malathion indicates increased herbicide degradation by CYP as partial mechanism of resistance to penoxsulam in all resistant populations and probably to imazethapyr in MS1 and bispyribac-sodium in AR1 populations