1,572 research outputs found

    Competitive Queing for Planning and Serial Performance

    Full text link

    A Scalable Model of Cerebellar Adaptive Timing and Sequencing: The Recurrent Slide and Latch (RSL) Model

    Full text link
    From the dawn of modern neural network theory, the mammalian cerebellum has been a favored object of mathematical modeling studies. Early studies focused on the fan-out, convergence, thresholding, and learned weighting of perceptual-motor signals within the cerebellar cortex. This led in the proposals of Albus (1971; 1975) and Marr (1969) to the still viable idea that the granule cell stage in the cerebellar cortex performs a sparse expansive recoding of the time-varying input vector. This recoding reveals and emphasizes combinations (of input state variables) in a distributed representation that serves as a basis for the learned, state-dependent control actions engendered by cerebellar outputs to movement related centers. Although well-grounded as such, this perspective seriously underestimates the intelligence of the cerebellar cortex. Context and state information arises asynchronously due to the heterogeneity of sources that contribute signals to compose the cerebellar input vector. These sources include radically different sensory systems - vision, kinesthesia, touch, balance and audition - as well as many stages of the motor output channel. To make optimal use of available signals, the cerebellum must be able to sift the evolving state representation for the most reliable predictors of the need for control actions, and to use those predictors even if they appear only transiently and well in advance of the optimal time for initiating the control action. Such a cerebellar adaptive timing competence has recently been experimentally verified (Perrett, Ruiz, & Mauk, 1993). This paper proposes a modification to prior, population, models for cerebellar adaptive timing and sequencing. Since it replaces a population with a single clement, the proposed Recurrent Slide and Latch (RSL) model is in one sense maximally efficient, and therefore optimal from the perspective of scalability.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-92-J-1309, N00014-93-1-1364, N00014-95-1-0409)

    Neural Dynamics of Learning and Performance of Fixed Sequences: Latency Pattern Reorganizations and the N-STREAMS Model

    Full text link
    Fixed sequences performed from memory play a key role in human cultural behavior, especially in music and in rapid communication through speaking, handwriting, and typing. Upon first performance, fixed sequences are often produced slowly, but extensive practice leads to performance that is both fluid and as rapid as allowed by constraints inherent in the task or the performer. The experimental study of fixed sequence learning and production has generated a large database with some challenging findings, including practice-related reorganizations of temporal properties of performance. In this paper, we analyze this literature and identify a coherent set of robust experimental effects. Among these are both the sequence length effect on latency, a dependence of reaction time on sequence length, and practice-dependent lost of the lengths effect on latency. We then introduce a neural network architecture capable of explaining these effects. Called the NSTREAMS model, this multi-module architecture embodies the hypothesis that the brain uses several substrates for serial order representation and learning. The theory describes three such substrates and how learning autonomously modifies their interaction over the course of practice. A key feature of the architecture is the co-operation of a 'competitive queuing' performance mechanism with both fundamentally parallel ('priority-tagged') and fundamentally sequential ('chain-like') representations of serial order. A neurobiological interpretation of the architecture suggests how different parts of the brain divide the labor for serial learning and performance. Rhodes (1999) presents a complete mathematical model as implementation of the architecture, and reports successful simulations of the major experimental effects. It also highlights how the network mechanisms incorporated in the architecture compare and contrast with earlier substrates proposed for competitive queuing, priority tagging and response chaining.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-92-J-1309, N00014-93-1-1364, N00014-95-1-0409); National Institute of Health (RO1 DC02852

    A Model of Cerebellar Adaptation of Grip Forces During Lifting

    Full text link
    We investigated adaptive neural control of precision grip forces during object lifting. A model is presented that adjusts reactive and anticipatory grip forces to a level just above that needed to stabilize lifted objects in the hand. The model obeys priciples of cerebellar structure and function by using slip sensations as error signals to adapt phasic motor commands to tonic force generators associated with output synergies controlling grip aperture. The learned phasic commands are weight and texture-dependent. Simulations of the new curcuit model reproduce key aspects of experimental observations of force application. Over learning trials, the onset of grip force buildup comes to lead the load force buildup, and the rate-of-rise of grip force, but not load force, scales inversely with the friction of the gripped object.CONACYT of Mexico (No. 65907); Defense Advanced Research Projects Agency/Office of Naval Research (N00014-95-1-0409, NIMH R01 DC02852

    Multiple Entries in the Encyclopedia of Christianity in the United States

    Get PDF
    List of Entries Authored by Daniel P Rhodes in the Encyclopedia of Christianity in the United States: 1).Orestes Augustus Brownson 2). Christian Community Development Association 3). Frank William Stringfellow 4). Marcus Garvey 5). Open Doors (Mission Organization) 6). World Gospel Mission 7). Henry Lyman Morehous

    The Cost of Cheap Freedom and the Liberation of Discipleship

    Get PDF
    This article argues that the freedom of the market has in turn become a new form of captivity. Describing the freedom associated with market relations, as conceived by F. A. Hayek, as a negative and cheap form of freedom primarily exercised in a freedom from outside interference, I discuss the cost of fully embracing this kind of freedom to the common life of a society and its constituents, identifying its true price in pervasive fragmentation, animosity, and injustice. I will then contrast this view of freedom with the positive freedom of discipleship described as the new way of life (κοινωνíα) koinonia for God’s people in Acts 2. In conclusion, I argue that the liberation of discipleship can ultimately free us from the economic enslavement to which we have become so accustomed

    The Complete Calibration of the Color-Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1

    Get PDF
    A key goal of the Stage IV dark energy experiments Euclid, LSST and WFIRST is to measure the growth of structure with cosmic time from weak lensing analysis over large regions of the sky. Weak lensing cosmology will be challenging: in addition to highly accurate galaxy shape measurements, statistically robust and accurate photometric redshift (photo-z) estimates for billions of faint galaxies will be needed in order to reconstruct the three-dimensional matter distribution. Here we present an overview of and initial results from the Complete Calibration of the Color-Redshift Relation (C3R2) survey, designed specifically to calibrate the empirical galaxy color-redshift relation to the Euclid depth. These redshifts will also be important for the calibrations of LSST and WFIRST. The C3R2 survey is obtaining multiplexed observations with Keck (DEIMOS, LRIS, and MOSFIRE), the Gran Telescopio Canarias (GTC; OSIRIS), and the Very Large Telescope (VLT; FORS2 and KMOS) of a targeted sample of galaxies most important for the redshift calibration. We focus spectroscopic efforts on under-sampled regions of galaxy color space identified in previous work in order to minimize the number of spectroscopic redshifts needed to map the color-redshift relation to the required accuracy. Here we present the C3R2 survey strategy and initial results, including the 1283 high confidence redshifts obtained in the 2016A semester and released as Data Release 1.Comment: Accepted to ApJ. 11 pages, 5 figures. Redshifts can be found at http://c3r2.ipac.caltech.edu/c3r2_DR1_mrt.tx

    Learning and Production of Movement Sequences: Behavioral, Neurophysiological, and Modeling Perspectives

    Full text link
    A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-à-vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.Defense Advanced Research Projects Agency/Office of Naval Research (N00014-95-1-0409); National Institute of Mental Health (R01 DC02852

    A History of the Congregational Methodist Church From 1957 to 1973

    Full text link
    During the past two centenaries there have been several Methodist bodies formed either by a split off of, or as a result of the influence of Methodism started under John Wesley. However, in the past forty years there has been an ecumenical movement to reunite many of these bodies. The Congregational Methodist Church is one of the Methodist bodies that has not been included in this ecumenical trend. Disagreement on aspects of doctrine and a distaste for the episcopial form of government are the major reasons for the Congregational Methodist Church not involving themself in this ecumenical trend. Thus, the Congregational Methodist Church, whose doctrine is Methodistic and government republican, has spread its message all across the southern part of the United States
    • …
    corecore