9 research outputs found

    Mobile Phone Radiation Induces Reactive Oxygen Species Production and DNA Damage in Human Spermatozoa In Vitro

    Get PDF
    Background: In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro. Principal Findings: Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR) tuned to 1.8 GHz and covering a range of specific absorption rates (SAR) from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001). Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMRexposure. Conclusions: RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications for the safety of extensive mobile phone use by males of reproductive age, potentially affecting both their fertility and the health and wellbeing of their offspring

    RF-EMR induces DNA fragmentation in human spermatozoa.

    No full text
    <p>Following Percoll fractionation, 5×10<sup>6</sup> high density spermatozoa were resuspended in 1 ml BWW, pipetted into 35 mm Petri dishes and placed inside a waveguide. 5×10<sup>6</sup> cells in 1 ml BWW were placed outside the waveguide as a control (closed circle). The cells in the waveguide were exposed to 1.8 GHz RF-EMR at SAR levels between 0.4 and 27.5 W/kg (open circles) and all samples were incubated for 16 h at 21°C. Following incubation, cells were fixed; DNase-I was used as a positive control. After 1 h incubation at 37°C, 50 µl of label and enzyme master mixes were added to the cells and incubated for 1 h at 37°C. Cells were then washed and assessed by flow cytometry. A, Significant levels of DNA fragmentation was observed in exposed spermatozoa at 2.8 W/kg (*p<0.05) and above (***p<0.001). B, DNA fragmentation was positively correlated with ROS production by the mitochondria as monitored by MSR (R<sup>2</sup> = 0.861). C, 8-OH-dG was also positively correlated with DNA fragmentation (R<sup>2</sup> = 0.725). Results are based on 4 independent samples.</p

    RF-EMR exposure decreases motility and vitality of human sperm while also inducing intracellular ROS.

    No full text
    <p>Percoll-purified spermatozoa (5×10<sup>6</sup> cells) were suspended in 1 ml BWW in a 35 mm Petri dish and placed within the waveguide while control cells placed outside the waveguide. A frequency of 1.8 GHz at a SAR of 27.5 W/kg was used and all samples were incubated for 16 h at 21°C. A, Sperm vitality was significantly reduced from the control value of 82%±4% to 29%±4% for the exposed cells (***p<0.001). B, Sperm motility was also significantly reduced from the control value of 82%±4% to 28%±1% (**p<0.01). C, ROS production was increased after RF-EMR exposure such that 28%±1% of the cells were producing ROS, while only 7%±0.4% of the controls contributed to ROS production (***p<0.001). D, 24%±1% of the exposed cells generated mitochondrial ROS, while the only 12%±1% of the control cells produced ROS from this source (***p<0.001). All results are based on 4 independent samples.</p

    RF-EMR induces ROS generation in human spermatozoa, in an SAR-dependent manner unrelated to thermal effects.

    No full text
    <p>Percoll-purified spermatozoa (5×10<sup>6</sup> cells) were suspended in 1 ml BWW in a 35 mm Petri dish and placed within the waveguide while control cells placed outside the waveguide (closed circles). Cells in the waveguide were exposed to 1.8 GHz RF-EMR at SAR levels between 0.4 and 27.5 W/kg (open circles) for 16 h at 21°C. Also, purified sperm cells were subjected to incubation temperatures ranging from 21°C–50°C for 2 h. As the power levels were increased, the cellular generation of ROS increased in a dose-dependent manner. ROS levels were also observed to increase as a result of incubation temperature, but such results were not significant until the temperature exceeded 40°C. A, ROS generation (DHE response) was significantly increased from control levels after exposure to 1.0 W/kg (*p<0.05) and above (***p<0.001). B, RF-EMR induces ROS generation by the sperm mitochondria as monitored by MSR; significant increases were observed at SAR values of 2.8 W/kg (***p<0.001) and above. All results are based on 4 independent samples. C, In order to control for thermal effects, the impact of temperature of cellular ROS generation was monitored; a significant increase in ROS generation was observed as temperatures rose above 40°C (p<0.001). D, Across the entire data set, the total level of ROS generation by human spermatozoa (DHE positive cells) was highly correlated with the level of ROS generation by the mitochondria (MSR positive cells: R<sup>2</sup> = 0.823).</p

    RF-EMR induces oxidative DNA damage in human spermatozoa.

    No full text
    <p>Following Percoll fractionation, 5×10<sup>6</sup> high density, spermatozoa were suspended in 1 ml BWW. The cells were placed in 35 mm Petri dishes and placed inside a waveguide. 5×10<sup>6</sup> cells in 1 ml BWW were placed outside the waveguide as a control (closed circle). The cells in the waveguide were exposed to 1.8 GHz RF-EMR at SAR levels between 0.4 and 27.5 W/kg (open circles) and all samples were incubated for 16 h at 21°C. Following incubation, Fe<sup>2+</sup> and H<sub>2</sub>O<sub>2</sub> was added to cells to act as a positive control, incubated for 1 h, then 100 µl 2 mM DTT/BWW solution was added and incubated for 45 min at 37°C. Cells were fixed and labeled with 100 µl charcoal purified anti-8-OH-dG, FITC tagged antibody at a dilution of 1∶50, incubated at 21°C for 1 h, washed and then assessed by flow cytometry. A, As the power levels were increased, the amount of oxidative DNA damage expressed also increased. A significant amount of oxidative DNA damage was observed in cells exposed to 2.8 W/kg (*p<0.05) RF-EMR and above (**p<0.01; ***p<0.001). Results are based on 4 independent samples. B, The levels of 8-OH-dG expression were positively correlated with the levels of ROS generation by the mitochondria (R<sup>2</sup> = 0.727).</p
    corecore