5 research outputs found

    Quality and standardization in blood component preparation with an automated blood processing technique

    Get PDF
    The use of automated blood processors in combination with bottom and top blood containers has been found to improve the standardization and quality of blood components. A study was performed to validate a new type of processor (Optipress® II) and compare its performance with a first generation processor (Optipress® I). Primary separation on the Optipress II was investigated on 570mL (± 10%) of anticoagulated blood in a nonpaired study. In addition, the quality of the products in routine production was compared between the results of the Optipress I and Optipress II. The whole blood units were kept overnight at room temperature (20 ± 2°C). Separation was performed under conditions to obtain 55mL buffy coats with a 50% haematocrit (ht). Platelet concentrate preparation was investigated in a paired study and compared to the routine manual method using PAS II additive solution. Parameters studied were volume, red cell, white cell and platelet counts, ht, haemoglobin (hb, total and free). Primary separation was more efficient in the Optipress II because the platelet count was lower in the erythrocyte concentrates (P<0.0001), platelets were lower in plasma (P<0.0001) and platelet counts were higher in buffy coats (P<0.0001). Buffy coat volume showed less variation (Optipress II VC=4%, Optipress I VC= 7.4%). Secondary separation did not show differences between the Optipress II and manual method but was advantageous because of the automatic termination of the procedure. Further improvement of standardization in blood component preparation is possible with an automated blood processor, leading to improvement of the quality of blood products for patient care

    Functional characteristics of S-59 photochemically treated platelet concentrates derived from buffy coats

    Get PDF
    Background: A photochemical treatment (PCT) process for inactivation of infectious pathogens and leukocytes has been developed and evaluated using single-donor platelet concentrates. This study assessed the application of PCT to platelets prepared from pooled buffy coats. In this study, in vitro functional characteristics of PCT platelets were compared to control platelets prepared from pooled buffy coats using the approved platelet-additive solution T-Sol®. Platelets in platelet PAS III additive solution without PCT were evaluated as well. PCT also included the use of a psoralen (S-59) reduction device (SRD). Materials and Methods: Four types of platelet concentrates were compared: (1) platelet concentrate in plasma/T-Sol; (2) platelet concentrate in plasma/PAS III; (3) platelet concentrate in plasma/PAS III, PCT, 9 h SRD and (4) platelet concentrate in plasma/PAS III, PCT, 16 h SRD. PCT occurred on the day after whole-blood collection. In vitro assay parameters included: pH, pO 2, pCO 2, HCO 3,/ - platelet count, mean platelet volume, plasma glucose, plasma lactate, total ATP, expression of p-selectin, hypotonic shock response and electron microscopy. Results: The results indicate that PCT is compatible with platelet concentrates prepared from pooled buffy coats for up to 7 days of storage. Conclusion: The PCT process resulted in acceptable in vitro platelet functional characteristics and is currently in clinical trials to evaluate the haemostatic efficacy of PCT platelets in thrombocytopenic patients requiring multiple platelet transfusions. Copyrigh

    DAR, a new RhD variant involving exons 4, 5, and 7, often in linkage with ceAR, a new Rhce variant frequently found in African blacks

    Get PDF
    The highly polymorphic Rh system is encoded by 2 homologous genes RHD and RHCE. Gene rearrangements, deletions, or point mutations may cause partial D and CE antigens. In this study, a new RHD variant, DAR, and a new RHCE variant, ceAR, are described in 4 Dutch African Blacks. Serologically, DAR showed weaker reactions with a monoclonal antibody and polyclonal antiserum against D. The DAR phenotype was characterized by complete loss of at least 9 of 37 Rh D epitopes. Erythrocytes expressing ceAR were all typed as VS(-), V(+). DNA analysis showed a partial D allele with only 3 mutations: C602G (exon 4), T667G (exon 5), and T1025C (exon 7). The ceAR allele carried G48C (exon 1), a hybrid exon 5 (A712G, C733G, A787G, and T800A), and A916G (exon 6). To study the frequency of these variants, 326 South-African Blacks was screened genomically. Of the 326 donors, 16 (4.9%) carried the DAR allele, 20 (6.1%) the ceAR allele, and 14 (4.3%) both mutated alleles. Five of these donors (1.5%) had the DAR phenotype, indicating that they carried the DAR allele homozygously or next to a D-negative allele. Immunogenicity of the D antigen for individuals with the DAR phenotype was proven, because 1 of the 4 Dutch individuals produced allo-antibodies against D after multiple transfusions with D-positive blood. In a multiethnic society, the prevalence of this D phenotype will increase and is therefore relevant in transfusion practice and in prevention of hemolytic disease of the newborn

    Transfusion of pooled buffy coat platelet components prepared with photochemical pathogen inactivation treatment: the euroSPRITE trial

    Get PDF
    A nucleic acid-targeted photochemical treatment (PCT) using amotosalen HCl (S-59) and ultraviolet A (UVA) light was developed to inactivate viruses, bacteria, protozoa, and leukocytes in platelet components. We conducted a controlled, randomized, double-blinded trial in thrombocytopenic patients requiring repeated platelet transfusions for up to 56 days of support to evaluate the therapeutic efficacy and safety of platelet components prepared with the buffy coat method using this pathogen inactivation process. A total of 103 patients received one or more transfusions of either PCT test (311 transfusions) or conventional reference (256 transfusions) pooled, leukoreduced platelet components stored for up to 5 days before transfusion. More than 50% of the PCT platelet components were stored for 4 to 5 days prior to transfusion. The mean 1-hour corrected count increment for up to the first 8 test and reference transfusions was not statistically significantly different between treatment groups (13,100 +/- 5400 vs 14,900 +/- 6200, P =.11). By longitudinal regression analysis for all transfusions, equal doses of test and reference components did not differ significantly with respect to the 1-hour (95% confidence interval [CI], -3.1 to 6.1 x 10(9)/L, P =.53) and 24-hour (95% CI, -1.3 to 6.5 x 10(9)/L, P =.19) posttransfusion platelet count. Platelet transfusion dose, pretransfusion storage duration, and patient size were significant covariates (P <.001) for posttransfusion platelet counts. Clinical hemostasis, hemorrhagic adverse events, and overall adverse events were not different between the treatment groups. Platelet components prepared with PCT offer the potential to further improve the safety of platelet transfusion using technology compatible with current methods to prepare buffy coat platelet components
    corecore