3 research outputs found

    Drought Prediction for Socio-Cultural Stability Project

    Get PDF
    The primary objective of this project is to answer the question: "Can existing, linked infrastructures be used to predict the onset of drought months in advance?" Based on our work, the answer to this question is "yes" with the qualifiers that skill depends on both lead-time and location, and especially with the associated teleconnections (e.g., ENSO, Indian Ocean Dipole) active in a given region season. As part of this work, we successfully developed a prototype drought early warning system based on existing/mature NASA Earth science components including the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5) forecasting model, the Land Information System (LIS) land data assimilation software framework, the Catchment Land Surface Model (CLSM), remotely sensed terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE) and remotely sensed soil moisture products from the Aqua/Advanced Microwave Scanning Radiometer - EOS (AMSR-E). We focused on a single drought year - 2011 - during which major agricultural droughts occurred with devastating impacts in the Texas-Mexico region of North America (TEXMEX) and the Horn of Africa (HOA). Our results demonstrate that GEOS-5 precipitation forecasts show skill globally at 1-month lead, and can show up to 3 months skill regionally in the TEXMEX and HOA areas. Our results also demonstrate that the CLSM soil moisture percentiles are a goof indicator of drought, as compared to the North American Drought Monitor of TEXMEX and a combination of Famine Early Warning Systems Network (FEWS NET) data and Moderate Resolution Imaging Spectrometer (MODIS)'s Normalizing Difference Vegetation Index (NDVI) anomalies over HOA. The data assimilation experiments produced mixed results. GRACE terrestrial water storage (TWS) assimilation was found to significantly improve soil moisture and evapotransportation, as well as drought monitoring via soil moisture percentiles, while AMSR-E soil moisture assimilation produced marginal benefits. We carried out 1-3 month lead-time forecast experiments using GEOS-5 forecasts as input to LIS/CLSM. Based on these forecast experiments, we find that the expected skill in GEOS-5 forecasts from 1-3 months is present in the soil moisture percentiles used to indicate drought. In the case of the HOA drought, the failure of the long rains in April appears in the February 1, March 1 and April 1 initialized forecasts, suggesting that for this case, drought forecasting would have provided some advance warning about the drought conditions observed in 2011. Three key recommendations for follow-up work include: (1) carry out a comprehensive analysis of droughts observed over the entire period of record for GEOS-5 forecasts; (2) continue to analyze the GEOS-5 forecasts in HOA stratifying by anomalies in long and short rains; and (3) continue to include GRACE TWS, Soil Moisture/Ocean Salinity (SMOS) and the upcoming NASA Soil Moisture Active/Passive (SMAP) soil moisture products in a routine activity building on this prototype to further quantify the benefits for drought assessment and prediction

    Data Assimilation Enhancements to Air Force Weathers Land Information System

    Get PDF
    The United States Air Force (USAF) has a proud and storied tradition of enabling significant advancements in the area of characterizing and modeling land state information. 557th Weather Wing (557 WW; DoDs Executive Agent for Land Information) provides routine geospatial intelligence information to warfighters, planners, and decision makers at all echelons and services of the U.S. military, government and intelligence community. 557 WW and its predecessors have been home to the DoDs only operational regional and global land data analysis systems since January 1958. As a trusted partner since 2005, Air Force Weather (AFW) has relied on the Hydrological Sciences Laboratory at NASA/GSFC to lead the interagency scientific collaboration known as the Land Information System (LIS). LIS is an advanced software framework for high performance land surface modeling and data assimilation of geospatial intelligence (GEOINT) information

    Interelement and Multi-Station Concentration Evidence for Large Scale Aerosol Sulfur Transport across Sweden

    No full text
    The concentrations of sulfur and several more elements were measured in a network of six sites in southern Sweden. High time resolution samples were taken using a continuous filter sampler and analysed by particle induced X-ray emission (PIXE). Simultaneous increases in the sulfur concentrations were seen along the network due to the inflow of polluted air masses. High sulfur concentrations generally occurred during south-westerly to easterly air flow. Some of the episodes, distinguished by their shorter duration and their elevated vanadium and nickel concentrations, are suggested to be of local origin
    corecore