59 research outputs found

    Discrete Generation of Superoxide and Hydrogen Peroxide by T Cell Receptor Stimulation: Selective Regulation of Mitogen-Activated Protein Kinase Activation and Fas Ligand Expression

    Get PDF
    Receptor-stimulated generation of reactive oxygen species (ROS) has been shown to regulate signal transduction, and previous studies have suggested that T cell receptor (TCR) signals may involve or be sensitive to ROS. In this study, we have shown for the first time that TCR cross-linking induced rapid (within 15 min) generation of both hydrogen peroxide and superoxide anion, as defined with oxidation-sensitive dyes, selective pharmacologic antioxidants, and overexpression of specific antioxidant enzymes. Furthermore, the data suggest the novel observation that superoxide anion and hydrogen peroxide are produced separately by distinct TCR-stimulated pathways. Unexpectedly, TCR-stimulated activation of the Fas ligand (FasL) promoter and subsequent cell death was dependent upon superoxide anion, but independent of hydrogen peroxide, while nuclear factor of activated T cells (NFAT) activation or interleukin 2 transcription was independent of all ROS. Anti-CD3 induced phosphorylation of extracellular signal–regulated kinase (ERK)1/2 required hydrogen peroxide generation but was unaffected by superoxide anion. Thus, antigen receptor signaling induces generation of discrete species of oxidants that selectively regulate two distinct redox sensitive pathways, a proapoptotic (FasL) and a proliferative pathway (ERK)

    Purification from Sf9 cells and characterization of recombinant Gq alpha and G11 alpha. Activation of purified phospholipase C isozymes by G alpha subunits

    Get PDF
    Members of the Gq alpha subfamily of heterotrimeric guanine nucleotide-binding proteins (G proteins) activate phospholipase C (PLC). The complementary DNAs (cDNAs) for the G protein alpha subunits Gq alpha and G11 alpha were expressed in insect (Sf9) cells using recombinant baculovirus. Active, nonaggregated, and membrane-associated protein was generated only when the alpha subunit cDNA was expressed together with cDNAs encoding G protein beta and gamma subunits. Recombinant alpha subunits (rGq alpha and rG11 alpha) were purified by three-step procedures, as was a PLC-activating alpha subunit(s) endogenous to Sf9 cells. Guanosine 5'-3-(thio)triphosphate (GTP gamma S) activated rGq alpha and rG11 alpha with an apparent K0.5 of 30 microM; similarly high concentrations of the nucleotide were required to observe [35S]GTP gamma S binding to rGq alpha. Activated rGq alpha and rG11 alpha each stimulated all three isoforms of purified PLC-beta with the rank order of potency PLC-beta 1 = PLC-beta 3 > or = PLC-beta 2; both alpha subunits also stimulated PLC-beta 1 and PLC-beta 3 to a much greater extent (10-fold) than they did PLC-beta 2. In contrast, activated rGq alpha and rG11 alpha failed to stimulate either PLC-delta 1 or PLC- gamma 1. Recombinant Gi alpha 1, Gi alpha 2, Gi alpha 3, Go alpha (A), Gs alpha, and Gz alpha all failed to stimulate any of the isoforms of PLC. The apparent affinities of rGq alpha and rG11 alpha for PLC-beta 1 and their capacities to activate the enzyme were similar to values observed for purified brain Gq alpha/11 alpha. Purified brain beta gamma subunits also stimulated the three isoforms of PLC-beta. The capacities of rGq alpha and rG11 alpha to activate PLC-beta 1 and PLC- beta 3 greatly exceeded those of beta gamma, whereas Gq alpha, G11 alpha and beta gamma were roughly equiefficacious with PLC-beta 2; the alpha subunits were more potent than beta gamma in all cases. The effects of alpha and beta gamma together were nonadditive for both PLC- beta 1 and PLC-beta 2. These results demonstrate that Gq alpha and G11 alpha specifically and selectively stimulate beta isoforms of PLC and confirm the idea that these members of the Gq alpha subfamily of G proteins are physiological regulators of this signaling pathway

    Sequential activation of phosphatidylinositol 3-kinase, beta pix, rac1, and nox1 in growth factor-induced production of h2o2

    Get PDF
    The generation of reactive oxygen species (ROS) in cells stimulated with growth factors requires the activation of phosphatidylinositol 3-kinase (PI3K) and the Rac protein. We report here that the COOHterminal region of Nox1, a protein related to gp91 phox (Nox2) of phagocytic cells, is constitutively associated with ␤Pix, a guanine nucleotide exchange factor for Rac. Both growth factor-induced ROS production and Rac1 activation were completely blocked in cells depleted of ␤Pix by RNA interference. Rac1 was also shown to bind to the COOH-terminal region of Nox1 in a growth factor-dependent manner. Moreover, the depletion of Nox1 by RNA interference inhibited growth factor-induced ROS generation. These results suggest that ROS production in growth factor-stimulated cells is mediated by the sequential activation of PI3K, ␤Pix, and Rac1, which then binds to Nox1 to stimulate its NADPH oxidase activity. Reactive oxygen species (ROS), such as superoxide anions and hydrogen peroxide (H 2 O 2 ), are produced in mammalian cells in response to the activation of various cell surface receptors and contribute to intracellular signaling and to the regulation of various biological activities, including host defense and metabolic conversion Nonphagocytic cells also produce superoxide anions in response to a variety of extracellular stimuli, including plateletderived growth factor (PDGF) and epidermal growth factor (EGF) (3, 5, 35, 38) Several homologs (Nox1, Nox3, Nox4, Nox5, Duox1, and Duox2) of gp91 phox (Nox2) have been identified in various nonphagocytic cell

    Peroxiredoxin 3 deficiency induces cardiac hypertrophy and dysfunction by impaired mitochondrial quality control

    Get PDF
    Mitochondrial quality control (MQC) consists of multiple processes: the prevention of mitochondrial oxidative damage, the elimination of damaged mitochondria via mitophagy and mitochondrial fusion and fission. Several studies proved that MQC impairment causes a plethora of pathological conditions including cardiovascular diseases. However, the precise molecular mechanism by which MQC reverses mitochondrial dysfunction, especially in the heart, is unclear. The mitochondria-specific peroxidase Peroxiredoxin 3 (Prdx3) plays a protective role against mitochondrial dysfunction by removing mitochondrial reactive oxygen species. Therefore, we investigated whether Prdx3-deficiency directly leads to heart failure via mitochondrial dysfunction. Fifty-two-week-old Prdx3-deficient mice exhibited cardiac hypertrophy and dysfunction with giant and damaged mitochondria. Mitophagy was markedly suppressed in the hearts of Prdx3-deficient mice compared to the findings in wild-type and Pink1-deficient mice despite the increased mitochondrial damage induced by Prdx3 deficiency. Under conditions inducing mitophagy, we identified that the damaged mitochondrial accumulation of PINK1 was completely inhibited by the ablation of Prdx3. We propose that Prdx3 interacts with the N-terminus of PINK1, thereby protecting PINK1 from proteolytic cleavage in damaged mitochondria undergoing mitophagy. Our results provide evidence of a direct association between MQC dysfunction and cardiac function. The dual function of Prdx3 in mitophagy regulation and mitochondrial oxidative stress elimination further clarifies the mechanism of MQC in vivo and thereby provides new insights into developing a therapeutic strategy for mitochondria-related cardiovascular diseases such as heart failure. © 20221

    Redox signaling: hydrogen peroxide as intracellular messenger

    No full text

    A Site of Tyrosine Phosphorylation in the C Terminus of the Epidermal Growth Factor Receptor Is Required to Activate Phospholipase C

    No full text
    Cells expressing mutant epidermal growth factor (EGF) receptors have been used to study mechanisms through which EGF increases phospholipase C (PLC) activity. C-terminal truncation mutant EGF receptors are markedly impaired in their ability to increase inositol phosphate formation compared with wild- type EGF receptors. Mutation of the single tyrosine self-phosphorylation site at residue 992 to phenylalanine in an EGF receptor truncated at residue 1000 abolished the ability of EGF to increase inositol phosphate formation. C- terminal deletion mutant receptors that are impaired in their ability to increase inositol phosphate formation effectively phosphorylate PLC-γ at the same tyrosine residues as do wild-type EGF receptors. EGF enhances PLC-γ association with wild-type EGF receptors but not with mutant receptors lacking sites of tyrosine phosphorylation. These results indicate that formation of a complex between self-phosphorylated EGF receptors and PLC-γ is necessary for enzyme activation in vivo. We propose that both binding of PLC-γ to activated EGF receptors and tyrosine phosphorylation of the enzyme are necessary to elicit biological responses. Kinase-active EGF receptors lacking sites of tyrosine phosphorylation are unable to signal increased inositol phosphate formation and increases in cytosolic Ca2+ concentration
    corecore