45 research outputs found
Integrated Ecosystem Assessment: Lake Ontario Water Management
BACKGROUND: Ecosystem management requires organizing, synthesizing, and projecting information at a large scale while simultaneously addressing public interests, dynamic ecological properties, and a continuum of physicochemical conditions. We compared the impacts of seven water level management plans for Lake Ontario on a set of environmental attributes of public relevance. METHODOLOGY AND FINDINGS: Our assessment method was developed with a set of established impact assessment tools (checklists, classifications, matrices, simulations, representative taxa, and performance relations) and the concept of archetypal geomorphic shoreline classes. We considered each environmental attribute and shoreline class in its typical and essential form and predicted how water level change would interact with defining properties. The analysis indicated that about half the shoreline of Lake Ontario is potentially sensitive to water level change with a small portion being highly sensitive. The current water management plan may be best for maintaining the environmental resources. In contrast, a natural water regime plan designed for greatest environmental benefits most often had adverse impacts, impacted most shoreline classes, and the largest portion of the lake coast. Plans that balanced multiple objectives and avoided hydrologic extremes were found to be similar relative to the environment, low on adverse impacts, and had many minor impacts across many shoreline classes. SIGNIFICANCE: The Lake Ontario ecosystem assessment provided information that can inform decisions about water management and the environment. No approach and set of methods will perfectly and unarguably accomplish integrated ecosystem assessment. For managing water levels in Lake Ontario, we found that there are no uniformly good and bad options for environmental conservation. The scientific challenge was selecting a set of tools and practices to present broad, relevant, unbiased, and accessible information to guide decision-making on a set of management options
Tractable consumer choice
We derive a rational model of separable consumer choice which can also serve as a
behavioral model. The central construct is [lambda] , the marginal utility of money, derived
from the consumer's rest-of-life problem. We present a robust approximation of [lambda],
and show how to incorporate liquidity constraints, indivisibilities and adaptation to
a changing environment. We fi nd connections with numerous historical and recent
constructs, both behavioral and neoclassical, and draw contrasts with standard partial
equilibrium analysis. The result is a better grounded, more
flexible and more intuitive description of consumer choice
Global Liver Proteomics of Rats Exposed for 5 Days to Phenobarbital Identifies Changes Associated with Cancer and with CYP Metabolism
A global proteomics approach was applied to model the hepatic response elicited by the toxicologically well-characterized xenobiotic phenobarbital (PB), a prototypical inducer of hepatic xenobiotic metabolizing enzymes and a well-known nongenotoxic liver carcinogen in rats. Differential detergent fractionation two-dimensional liquid chromatography electrospray ionization tandem mass spectrometry and systems biology modeling were used to identify alterations in toxicologically relevant hepatic molecular functions and biological processes in the livers of rats following a 5-day exposure to PB at 80 mg/kg/day or a vehicle control. Of the 3342 proteins identified, expression of 121 (3.6% of the total proteins) was significantly increased and 127 (3.8%) significantly decreased in the PB group compared to controls. The greatest increase was seen for cytochrome P450 (CYP) 2B2 (167-fold). All proteins with statistically significant differences from control were then analyzed using both Gene Ontology (GO) and Ingenuity Pathways Analysis (IPA, 5.0 IPA-Tox) for cellular location, function, network connectivity, and possible disease processes, especially as they relate to CYP-mediated metabolism and nongenotoxic carcinogenesis mechanisms. The GO results suggested that PB's mechanism of nongenotoxic carcinogenesis involves both increased xenobiotic metabolism, especially induction of the 2B subfamily of CYP enzymes, and increased cell cycle activity. Apoptosis, however, also increased, perhaps, as an attempt to counter the rising cancer threat. Of the IPA-mapped proteins, 41 have functions which are procarcinogenic and 14 anticarcinogenic according to the hypothesized nongenotoxic mechanism of imbalance between apoptosis and cellular proliferation. Twenty-two additional IPA nodes can be classified as procarcinogenic by the competing theory of increased metabolism resulting in the formation of reactive oxygen species. Since the systems biology modeling corresponded well to PB effects previously elucidated via more traditional methods, the global proteomic approach is proposed as a new screening methodology that can be incorporated into future toxicological studies