6 research outputs found

    Electromagnetic Signatures of Human Skin in the Millimeter Wave Band 80-100 GHz

    Get PDF
    Due to changes in global security requirements attention is turning to new means by which anomalies on the human body might be identified. For security screening systems operating in the millimeter wave band anomalies can be identified by measuring the emissivities of subjects. As the interaction of millimeter waves with the human body is only a fraction of a millimeter into the skin and clothing has a small, but known effect, precise measurement of the emission and reflection of this radiation will allow comparisons with the norm for that region of the body and person category. A technique to measure the human skin emissivity in vivo over the frequency band 80 GHz to 100 GHz is developed and described. The mean emissivity values of the skin of a sample of 60 healthy participants (36 males and 24 females) measured using a 90GHz calibrated radiometer were found to range from 0.17±0.005 to 0.68±0.005. The lower values of emissivity are a result of measuring particularly thin skin on the inner wrist, volar side of the forearm, and back of hand, whereas higher values of emissivity are results of measuring thick skin on the outer wrist, dorsal surface of the forearm, and palm of hand. The mean differences in the emissivity between Asian and European male participants were calculated to be in the range of 0.04 to 0.11 over all measurement locations. Experimental measurements of the emissivity for male and female participants having normal and high body mass index indicate that the mean differences in the emissivity are in the range of 0.05 to 0.15 for all measurement locations. These results show the quantitative variations in the skin emissivity between locations, gender, and individuals. The mean differences in the emissivity values between dry and wet skin on the palm of hand and back of hand regions were found to be 0.143 and 0.066 respectively. These results confirm that radiometry can, as a non-contact method, identify surfaces attached to the human skin in tens of seconds. These results indicate a route to machine anomaly detection that may increase the through-put speed, the detection probabilities and reduce the false alarm rates in security screening portals

    Signatures of human skin in the millimetre wave band (80-100) GHz

    Get PDF
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. With the performance of millimeter wave security screening imagers improving (reduced speckle, greater sensitivity, and better spatial resolution) attention is turning to identification of anomalies which appear on the human body. Key to this identification is the understanding of how the emissive and reflective properties vary over the human body and between different categories of people, defined by age and gender for example. As the interaction of millimetre waves with the human body is only a fraction of a millimetre into the skin, precise measurement of the emission and reflection of this radiation will allow comparisons with the norm for that region of the body and person category. On an automated basis at security screening portals, this will increase detection probabilities and reduce false alarm rates, ensuring high throughputs at entrances to future airport departure lounges and transport networks. A technique to measure the human skin emissivity in vivo over the frequency band 80 GHz to 100 GHz is described. The emissivities of the skin of a sample of 60 healthy participants (36 males and 24 females) measured using a 90 GHz calibrated radiometer was found to range from 0.17±0.002 to 0.68±0.002. The radiometric measurements were made at four locations on the arm, namely: palm of hand, back of hand, dorsal surface of the forearm, and volar side of the forearm, where the water content and the skin thickness are known to be different. These measurements show significant variation in emissivity from person to person and, more importantly, significant variation at different locations on the arms of individuals. Males were found to have an emissivity 0.03 higher than those of females. The emissivity of the back of the hand, where the skin is thinner and the blood vessels are closer to the skin surface, was found to be lower by 0.0681 than the emissivity of the palm of the hand, where the skin is thicker. The measurements also show that the emissivity of the volar side location where the blood vessels are closer to the skin surface is lower by 0.0677 than the emissivity of the dorsal surface location. The measured differences agree with those differences estimated by a half space electromagnetic model of the interaction and can be interpreted in terms of the differing water contents and skin thickness of those regions of the body

    Synthetic aperture radar imaging for burn wounds diagnostics

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. The need for technologies to monitor the wound healing under dressing materials has led us to investigate the feasibility of using microwave and millimetre wave radiations due to their sensitivity to water, non‐ ionising nature, and transparency to dressing materials and clothing. This paper presents synthetic aperture radar (SAR) images obtained from an active microwave and millimetre wave scanner operating over the band 15–40 GHz. Experimental images obtained from porcine skin samples with the presence of dressing materials and after the application of localised heat treatments reveal that SAR images can be used for diagnosing burns and for potentially monitoring the healing under dressing materials. The experimental images were extracted separately from the amplitude and phase measurements of the input reflection coefficient (S11). The acquired images indicate that skin and burns can be detected and observed through dressing materials as well as features of the skin such as edges, irregularities, bends, burns, and variation in the reflectance of the skin. These unique findings enable a microwave and millimetre‐wave scanner to be used for evaluating the wound healing progress under dressing materials without their often‐painful removal: a capability that will reduce the cost of healthcare, distress caused by long waiting hours, and the healthcare interventional time

    Titan: An Enabling Framework for Activity-Aware “Pervasive Apps” in Opportunistic Personal Area Networks

    Get PDF
    Upcoming ambient intelligence environments will boast ever larger number of sensor nodes readily available on body, in objects, and in the user's surroundings. We envision "Pervasive Apps", user-centric activity-aware pervasive computing applications. They use available sensors for activity recognition. They are downloadable from application repositories, much like current Apps for mobile phones. A key challenge is to provide Pervasive Apps in open-ended environments where resource availability cannot be predicted. We therefore introduce Titan, a service-oriented framework supporting design, development, deployment, and execution of activity-aware Pervasive Apps. With Titan, mobile devices inquire surrounding nodes about available services. Internet-based application repositories compose applications based on available services as a service graph. The mobile device maps the service graph to Titan Nodes. The execution of the service graph is distributed and can be remapped at run time upon changing resource availability. The framework is geared to streaming data processing and machine learning, which is key for activity recognition. We demonstrate Titan in a pervasive gaming application involving smart dice and a sensorized wristband. We comparatively present the implementation cost and performance and discuss how novel machine learning methodologies may enhance the flexibility of the mapping of service graphs to opportunistically available nodes.ISSN:1687-1472ISSN:1687-149
    corecore