2 research outputs found
Improvement of Technology of Thermal Insulation of Buildings
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° ΡΠ΅ΠΌ, ΡΡΠΎ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅
Π½ΠΎΡΠΌΡ ΡΠ±Π΅ΡΠ΅ΠΆΠ΅Π½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΈ ΡΠ΅ΠΏΠ»ΠΎΠ·Π°ΡΠΈΡΡ Π·Π΄Π°Π½ΠΈΠΉ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Ρ Π½Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅
Π²Π΅ΡΡΠΌΠ° ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ, Π½Π΅ Π²ΡΠ΅Π³Π΄Π°
ΠΎΡΠ²Π΅ΡΠ°ΡΡΠΈΡ
ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΡΡΠ²Π° ΠΈ Π·Π°ΡΠ°ΡΡΡΡ Π²Π΅ΡΡΠΌΠ° Π΄ΠΎΡΠΎΠ³ΠΎΡΡΠΎΡΡΠΈΡ
. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π°
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΠΎΠ³ΡΠ°ΠΆΠ΄Π°ΡΡΠΈΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ ΡΡΠ΅Π½ Π·Π΄Π°Π½ΠΈΠΉ,
ΡΡΠΈΡΡΠ²Π°ΡΡΠ°Ρ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π½ΡΡ
, ΡΠ΅ΠΏΠ»ΠΎΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
, ΡΠ΅ΠΆΠΈΠΌΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ²
ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ. Π¦Π΅Π»ΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΎΠ»ΡΠΈΠ½Ρ
ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΠΈΠ·ΠΎΠ»ΡΡΠΈΠΎΠ½Π½ΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠΌ ΠΎΠ±ΡΠ΅ΠΊΡΠ° Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΎΡΠΏΡΡΠΊΠ°Π΅ΠΌΠΎΠΉ Π΅ΠΌΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ
ΡΠ½Π΅ΡΠ³ΠΈΠΈ. Π ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ
ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π°, ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅,
ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΠ΅Π΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠ΅Ρ
Π½ΠΈΠΊΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ
ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΈΠ·ΠΎΠ»ΡΡΠΈΠΈ ΠΎΠ³ΡΠ°ΠΆΠ΄Π°ΡΡΠΈΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ ΡΡΠ΅Π½ Π·Π΄Π°Π½ΠΈΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ
ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡ
ΠΎΠ΄ΠΎΠ² ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ
ΠΏΠΎΡΠ΅ΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΠ³ΡΠ°ΠΆΠ΄Π°ΡΡΠΈΠ΅ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ
Π½Π° ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Β«ΠΎΡΠΎΠΏΠ»Π΅Π½ΠΈΠ΅, Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΡ ΠΈ ΠΊΠΎΠ½Π΄ΠΈΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅Β». ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΡ
ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΎΠΊ,
ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΡΡΠΈΡ
ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΠ»ΡΠΈΠ½Ρ ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΠΈΠ·ΠΎΠ»ΡΡΠΈΠΎΠ½Π½ΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠΌ
ΡΡΠ΅Π½ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ
Π·Π°ΡΡΠ°Ρ, Π²ΡΠ³ΠΎΠ΄Π½ΠΎΠΌΡ Π²ΡΠ±ΠΎΡΡ ΡΠΏΠΎΡΠΎΠ±Π°
ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠΏΡΡΠΊΠ°Π΅ΠΌΠΎΠΉ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈThe relevance of research is due to the fact that at present, modern standards for saving thermal
energy and thermal protection of buildings are focused on the use of a very limited set of solutions
to reduce energy consumption, which do not always meet the specific conditions of construction and
are often very expensive. A technique for studying the effective insulation of building envelopes is
proposed, taking into account the relationship between structural, heat engineering, regime parameters
and economic indicators. The goal is to determine the optimal value of the thickness of insulation by
the heat-insulating material of the object, taking into account the thermal energy supplied to it. In the
study, methods of mathematical modeling of heat transfer, an optimization problem were used. An
experimental study is presented, showing the possibility of applying the technique of technical and
economic optimization of thermal insulation of building envelopes. The result of the study is to reduce
the cost of heat losses through building envelopes and electrical energy for the regulation of the βheating,
ventilation and air conditioningβ system. The conducted studies testify to the expediency of using the
proposed developments, which contribute to determining the optimal thickness of insulation with heatinsulating material of the walls of objects, finding the minimum reduced costs, and an advantageous
choice of a method for regulating the supplied thermal energ
ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ Π½Π°ΡΡΠΆΠ½ΡΡ ΠΎΠ³ΡΠ°ΠΆΠ΄Π°ΡΡΠΈΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ ΡΡΠ΅Π½ Π·Π΄Π°Π½ΠΈΡ
The relevance of research is caused by the fact that at present, modern standards for saving thermal energy and thermal protection of buildings are focused on the use of a very limited set of solutions to reduce energy consumption, which do not always meet the specific conditions of construction and are often very expensive. A method for studying the effective insulation of building envelopes is proposed, taking into account the relationship between structural, heating, regime parameters and economic indicators. The goal is to determine the optimal value of the insulation thickness of the heat-insulating material, taking into account the thermal energy supplied to the object. The study used methods of mathematical modeling of heat transfer, optimization problem. An experimental study is presented, showing the possibility of applying the method of technical and economic optimization of thermal insulation of building envelopes. It was determined on the basis of the mathematical model of the thermal insulation of building envelopes developed by the authors, taking into account the regulation of the supplied thermal energy. The result of the study is to reduce the cost of heat losses through building envelopes and electrical energy for the regulation of the βheating, ventilation and air conditioningβ system. The conducted studies testify to the expediency of using the proposed developments, which contribute to determining the optimal thickness of wall insulation with heat-insulating material, finding the minimum reduced costs, and an advantageous choice of a method for regulating the supplied thermal energyΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° ΡΠ΅ΠΌ, ΡΡΠΎ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅
Π½ΠΎΡΠΌΡ ΡΠ±Π΅ΡΠ΅ΠΆΠ΅Π½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΈ ΡΠ΅ΠΏΠ»ΠΎΠ·Π°ΡΠΈΡΡ Π·Π΄Π°Π½ΠΈΠΉ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Ρ Π½Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅
Π²Π΅ΡΡΠΌΠ° ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ, Π½Π΅ Π²ΡΠ΅Π³Π΄Π°
ΠΎΡΠ²Π΅ΡΠ°ΡΡΠΈΡ
ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΡΡΠ²Π° ΠΈ Π·Π°ΡΠ°ΡΡΡΡ Π²Π΅ΡΡΠΌΠ° Π΄ΠΎΡΠΎΠ³ΠΎΡΡΠΎΡΡΠΈΡ
. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π°
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΠΎΠ³ΡΠ°ΠΆΠ΄Π°ΡΡΠΈΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ ΡΡΠ΅Π½ Π·Π΄Π°Π½ΠΈΠΉ,
ΡΡΠΈΡΡΠ²Π°ΡΡΠ°Ρ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π½ΡΡ
, ΡΠ΅ΠΏΠ»ΠΎΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
, ΡΠ΅ΠΆΠΈΠΌΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ²
ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ. Π¦Π΅Π»ΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΎΠ»ΡΠΈΠ½Ρ
ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΠΈΠ·ΠΎΠ»ΡΡΠΈΠΎΠ½Π½ΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠΌ ΠΎΠ±ΡΠ΅ΠΊΡΠ° Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΎΡΠΏΡΡΠΊΠ°Π΅ΠΌΠΎΠΉ Π΅ΠΌΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ
ΡΠ½Π΅ΡΠ³ΠΈΠΈ. Π ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ
ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π°, ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅,
ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠ΅Ρ
Π½ΠΈΠΊΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ
ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ
ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΈΠ·ΠΎΠ»ΡΡΠΈΠΈ ΠΎΠ³ΡΠ°ΠΆΠ΄Π°ΡΡΠΈΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ ΡΡΠ΅Π½ Π·Π΄Π°Π½ΠΈΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ
ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡ
ΠΎΠ΄ΠΎΠ² ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ
ΠΏΠΎΡΠ΅ΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΠ³ΡΠ°ΠΆΠ΄Π°ΡΡΠΈΠ΅ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ
Π½Π° ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Β«ΠΎΡΠΎΠΏΠ»Π΅Π½ΠΈΠ΅, Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΡ ΠΈ ΠΊΠΎΠ½Π΄ΠΈΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅Β». ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΡ
ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΎΠΊ,
ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΡΡΠΈΡ
ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΠ»ΡΠΈΠ½Ρ ΡΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΠΈΠ·ΠΎΠ»ΡΡΠΈΠΎΠ½Π½ΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠΌ
ΡΡΠ΅Π½ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ
Π·Π°ΡΡΠ°Ρ, Π²ΡΠ³ΠΎΠ΄Π½ΠΎΠΌΡ Π²ΡΠ±ΠΎΡΡ ΡΠΏΠΎΡΠΎΠ±Π°
ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠΏΡΡΠΊΠ°Π΅ΠΌΠΎΠΉ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈ