20 research outputs found

    EPR kinetic studies of the S−1 state in spinach thylakoids

    Get PDF
    AbstractThe YZ decay kinetics in a formal S−1 state, regarded as a reduced state of the oxygen evolving complex, was determined using time-resolved EPR spectroscopy. This S−1 state was generated by biochemical treatment of thylakoid membranes with hydrazine. The steady-state oxygen evolution of the sample was used to optimize the biochemical procedure for performing EPR experiments. A high yield of the S−1 state was generated as judged by the two-flash delay in the first maximum of oxygen evolution in Joliot flash-type experiments. We have shown that the YZ re-reduction rate by the S−1 state is much slower than that of any other S-state transition in hydrazine-treated samples. This slow reduction rate in the S−1 to S0 transition, which is in the order of the S3 to S0 transition rate, suggests that this transition is accompanied by some structural rearrangements. Possible explanations of this unique, slow reduction rate in the S−1 to S0 transition are considered, in light of earlier observations by others on hydrazine/hydroxylamine reduced PS II samples

    Starch, Lipid, and Protein Accumulation in Nutrient-Stressed Microalgal Cells Studied Using Fourier Transform Infrared Microscopy

    Get PDF
    Microalgae are fast growing organisms that can be used as feedstock for the production of biofuels. The metabolism of microalgae can be manipulated by exposing them to different environmental conditions for favoring the accumulation of lipids, carbohydrates or proteins. For example, a change in growth conditions can cause the accumulation of large amounts of lipids, representing an opportunity for biodiesel production. Monitoring changes in the composition of microalgal cells is therefore important in assessing new growth conditions. However, at present, most techniques are time consuming, invasive and expensive. Here we have used FTIR microscopy to quantify lipid, protein, and starch accumulation in Neochloris minuta cells grown in the presence and absence of nitrogen. Under nitrogen deprivation the cellular lipid composition increases by a factor of 2.4, the cellular protein concentration decreases by ~60% while the starch concentration is unaltered. These estimates of biochemical composition were derived using a variety of analytical methods, and form the basis for establishing to what extent FTIR microscopy can be used as a probe of cellular biochemical composition. We find that the distribution of materials in Neochloris minuta cells estimated directly from the FTIR spectra compare favorably with that estimated using these other analytical methods. FTIR spectroscopy is shown to be a versatile and easy-to-use tool for estimating distributions of biological materials in microalgal cells

    Photochemistry of Free and Bound Zn-Chlorophyll Analogues to Synthetic Peptides Depend on the Quinone and pH

    No full text
    A synthetic peptide was used as a scaffold to bind Zn-Chlorophyll (ZnChl) analogues through histidine ligation to study their photochemistry in the presence of different type of quinones. The Chl analogues were chlorin e6 (Ce6), chlorin e6 trimethyl ester, pyropheophorbide a, and pheophorbide a while the quinones were PPBQ, DMBQ, NPHQ, DBTQ, DCBQ and PBQ. The binding of each ZnChl analogue to the peptide was verified by native gel electrophoresis. First the photo-stability of the ZnChl analogues were tested under continuous light. The ZnCe6 and ZnCe6TM analogues showed the least stability judged by the loss of optical signal intensity at their Qy band. The photoactivity of each ZnChl analogue was measured in the presence of each of the six quinones using time-resolved EPR spectroscopy. DMBQ was found to be the most efficient electron acceptor when all four ZnChl analogues were compared. The light-induced electron transfer between the ZnChl analogues complexed with the peptide and DMBQ were also measured using time-resolved EPR spectroscopy. The ZnCe6–peptide complex exhibited the highest photoactivity. The electron transfer in the complex was faster and the photoactivity yield was higher than those values obtained for free ZnCe6 and DMBQ. The fast phase of kinetics can be attributed to intra-protein electron transfer in the complex since it was not observed in the presence of DMBQ–glutathione adduct. Unlike free ZnCe6, the ZnCe6–peptide complex was robust and demonstrated very similar photoactivity efficiency in pH values 10, 8.0 and 5.0. The electron transfer kinetics were pH dependent and appeared to be modulated by the peptide charge and possibly fold. The charge recombination rate was slowed by an order of magnitude when the pH value was changed from 10.0 to 5.0. The implications of constructing the photoactive peptide complexes in terms of artificial photosynthesis are discussed

    Algal Biofuels

    No full text
    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented

    Biofuels: The Benefits and Disadvantages as an Energy Source

    No full text
    This lecture will present the good and evil of biofuels as energy sources. The U.S. ethanol and biodiesel production levels are expected to meet 17% of demand for transport fuel by 2021. Currently, the major source for the mass production of biofuels is crops, such as vegetable oil, sugarcane, and corn. Can we afford using farm land and converting food crops to energy crops? Are there any other viable resources that can be used to produce liquid biofuels

    Natural and Artificial Photosynthesis

    No full text
    This technical book explores current and future applications of solar power as an unlimited source of energy that earth receives every day. Photosynthetic organisms have learned to utilize this abundant source of energy by converting it into high-energy biochemical compounds. Inspired by the efficient conversion of solar energy into an electron flow, attempts have been made to construct artificial photosynthetic systems capable of establishing a charge separation state for generating electricity or driving chemical reactions. Another important aspect of photosynthesis is the CO2 fixation and the production of high energy compounds. Photosynthesis can produce biomass using solar energy while reducing the CO2 level in air. Biomass can be converted into biofuels such as biodiesel and bioethanol. Under certain conditions, photosynthetic organisms can also produce hydrogen gas which is one of the cleanest sources of energy.https://nsuworks.nova.edu/cnso_chemphys_facbooks/1006/thumbnail.jp

    A P450 Metabolism Experiment for Undergraduate Biochemistry Laboratories

    No full text
    A laboratory experiment is described to provide students hands-on experience in learning some aspects of microsomal P450-catalyzed metabolism. Undergraduate students in the biochemistry laboratories detect and quantify the metabolites produced from butylated hydroxytoluene by liver microsomes using Gas Chromatography-Mass Spectrometry (GC-MS) techniques. The laboratory provides training to students for handling active microsomes, sample cleanup of biological matrices, extraction of organic metabolites, GC-MS analysis and data interpretation of complex mixtures, and collaborative work
    corecore