195 research outputs found

    On the Convergence of Blockchain and Internet of Things (IoT) Technologies

    Full text link
    The Internet of Things (IoT) technology will soon become an integral part of our daily lives to facilitate the control and monitoring of processes and objects and revolutionize the ways that human interacts with the physical world. For all features of IoT to become fully functional in practice, there are several obstacles on the way to be surmounted and critical challenges to be addressed. These include, but are not limited to cybersecurity, data privacy, energy consumption, and scalability. The Blockchain decentralized nature and its multi-faceted procedures offer a useful mechanism to tackle several of these IoT challenges. However, applying the Blockchain protocols to IoT without considering their tremendous computational loads, delays, and bandwidth overhead can let to a new set of problems. This review evaluates some of the main challenges we face in the integration of Blockchain and IoT technologies and provides insights and high-level solutions that can potentially handle the shortcomings and constraints of both IoT and Blockchain technologies.Comment: Includes 11 Pages, 3 Figures, To publish in Journal of Strategic Innovation and Sustainability for issue JSIS 14(1

    An examination of iranian penal policies to deal with administrative and economic corruptions, emphasizing the islamic penal code that's been adopted in 2013

    Get PDF
    Economic crime imposes very costs to society and because of its complexity detection and prosecution in difficult. So required some prehensive criminal policy. This research try to survey Iran's criminal policy about economic crimes with emphasis on new penal code, enacted in 2013. The results indicate that legislator has not been defined "economic crimes" term but is considered its instances according to articles 47, 36,109 of new penal code. Fighting against Economic Crimes must be including preventive measures and criminal reaction. Preventive measures has been coherent by dictating of United Nations Convention against Corruption (UNCAC) and fighting against Corruption internal code (2011) but Iran's legislator has not taken coherent policy to fighting economic crimes by criminal reaction . Although the new penal Code adopted some strict against this crimes but we couldn’t see a coherent policy against its;Keywords: criminal policy, economic crimes, economic corruption, Islamic Penal Codethat's been adopted in 2013

    Integrating emerging cryptographic engineering research and security education

    Get PDF
    Unlike traditional embedded systems such as secure smart cards, emerging secure deeply embedded systems, e.g., implantable and wearable medical devices, have larger “attack surface”. A security breach in such systems which are embedded deeply in human bodies or objects would be life-threatening, for which adopting traditional solutions might not be practical due to tight constraints of these often-battery-powered systems. Unfortunately, although emerging cryptographic engineering research mechanisms have started solving this critical problem, university education (at both graduate and undergraduate level) lags comparably. One of the pivotal reasons for such a lag is the multi-disciplinary nature of the emerging security bottlenecks (mathematics, engineering, science, and medicine, to name a few). Based on the aforementioned motivation, in this paper, we present an effective research and education integration strategy to overcome this issue at Rochester Institute of Technology. Moreover, we present the results of more than one year implementation of the presented strategy at graduate level through “side-channel analysis attacks” case studies. The results of the presented work show the success of the presented methodology while pinpointing the challenges encountered compared to traditional embedded system security research/teaching integration

    Optimal Complex-Valued Prototype Filter Design for GFDM Systems

    Full text link
    One of the main challenges with generalized frequency division multiplexing (GFDM) systems is prototype filter design. A poorly designed filter increases inherent and out-of-band (OOB) interferences. In this paper, we introduce a novel optimal prototype filter for GFDM systems that eliminates the negative effects of intrinsic interferences. We introduce a complex-valued pulse shape similar to a single-sideband (SSB) modulation scheme, which significantly improves bandwidth efficiency. Specifically, we introduce an optimization problem to design an optimal pulse shape filter to reduce all intrinsic interference to zero. We derive analytical expressions to evaluate the bit error rate (BER) of the system and show how the designed optimal prototype filter outperforms its current counterparts.Comment: arXiv admin note: text overlap with arXiv:2301.1047

    Multidisciplinary Approaches and Challenges in Integrating Emerging Medical Devices Security Research and Education

    Get PDF
    Traditional embedded systems such as secure smart cards and nano-sensor networks have been utilized in various usage models. Nevertheless, emerging secure deeply-embedded systems, e.g., implantable and wearable medical devices, have comparably larger “attack surface”. Specifically, with respect to medical devices, a security breach can be life-threatening (for which adopting traditional solutions might not be practical due to tight constraints of these often-battery-powered systems), and unlike traditional embedded systems, it is not only a matter of financial loss. Unfortunately, although emerging cryptographic engineering research mechanisms for such deeply-embedded systems have started solving this critical, vital problem, university education (at both graduate and undergraduate level) lags comparably. One of the pivotal reasons for such a lag is the multi-disciplinary nature of the emerging security bottlenecks. Based on the aforementioned motivation, in this work, at Rochester Institute of Technology, we present an effective research and education integration strategy to overcome this issue in one of the most critical deeply-embedded systems, i.e., medical devices. Moreover, we present the results of two years of implementation of the presented strategy at graduate-level through fault analysis attacks, a variant of side-channel attacks. We note that the authors also supervise an undergraduate student and the outcome of the presented work has been assessed for that student as well; however, the emphasis is on graduate-level integration. The results of the presented work show the success of the presented methodology while pinpointing the challenges encountered compared to traditional embedded system security research/teaching integration of medical devices security. We would like to emphasize that our integration approaches are general and scalable to other critical infrastructures as well

    Education and Research Integration of Emerging Multidisciplinary Medical Devices Security

    Get PDF
    Traditional embedded systems such as secure smart cards and nano-sensor networks have been utilized in various usage models. Nevertheless, emerging secure deeply-embedded systems, e.g., implantable and wearable medical devices, have comparably larger “attack surface”. Specifically, with respect to medical devices, a security breach can be life-threatening (for which adopting traditional solutions might not be practical due to tight constraints of these often-battery-powered systems), and unlike traditional embedded systems, it is not only a matter of financial loss. Unfortunately, although emerging cryptographic engineering research mechanisms for such deeply-embedded systems have started solving this critical, vital problem, university education (at both graduate and undergraduate level) lags comparably. One of the pivotal reasons for such a lag is the multi-disciplinary nature of the emerging security bottlenecks. Based on the aforementioned motivation, in this work, at Rochester Institute of Technology, we present an effective research and education integration strategy to overcome this issue in one of the most critical deeply-embedded systems, i.e., medical devices. Moreover, we present the results of two years of implementation of the presented strategy at graduate-level through fault analysis attacks, a variant of side-channel attacks. We note that the authors also supervise an undergraduate student and the outcome of the presented work has been assessed for that student as well; however, the emphasis is on graduate-level integration. The results of the presented work show the success of the presented methodology while pinpointing the challenges encountered compared to traditional embedded system security research/teaching integration of medical devices security. We would like to emphasize that our integration approaches are general and scalable to other critical infrastructures as well
    • …
    corecore