1,029 research outputs found
TwiSE at SemEval-2016 Task 4: Twitter Sentiment Classification
This paper describes the participation of the team "TwiSE" in the SemEval
2016 challenge. Specifically, we participated in Task 4, namely "Sentiment
Analysis in Twitter" for which we implemented sentiment classification systems
for subtasks A, B, C and D. Our approach consists of two steps. In the first
step, we generate and validate diverse feature sets for twitter sentiment
evaluation, inspired by the work of participants of previous editions of such
challenges. In the second step, we focus on the optimization of the evaluation
measures of the different subtasks. To this end, we examine different learning
strategies by validating them on the data provided by the task organisers. For
our final submissions we used an ensemble learning approach (stacked
generalization) for Subtask A and single linear models for the rest of the
subtasks. In the official leaderboard we were ranked 9/35, 8/19, 1/11 and 2/14
for subtasks A, B, C and D respectively.\footnote{We make the code available
for research purposes at
\url{https://github.com/balikasg/SemEval2016-Twitter\_Sentiment\_Evaluation}.
Adaptive Discrete Second Order Sliding Mode Control with Application to Nonlinear Automotive Systems
Sliding mode control (SMC) is a robust and computationally efficient
model-based controller design technique for highly nonlinear systems, in the
presence of model and external uncertainties. However, the implementation of
the conventional continuous-time SMC on digital computers is limited, due to
the imprecisions caused by data sampling and quantization, and the chattering
phenomena, which results in high frequency oscillations. One effective solution
to minimize the effects of data sampling and quantization imprecisions is the
use of higher order sliding modes. To this end, in this paper, a new
formulation of an adaptive second order discrete sliding mode control (DSMC) is
presented for a general class of multi-input multi-output (MIMO) uncertain
nonlinear systems. Based on a Lyapunov stability argument and by invoking the
new Invariance Principle, not only the asymptotic stability of the controller
is guaranteed, but also the adaptation law is derived to remove the
uncertainties within the nonlinear plant dynamics. The proposed adaptive
tracking controller is designed and tested in real-time for a highly nonlinear
control problem in spark ignition combustion engine during transient operating
conditions. The simulation and real-time processor-in-the-loop (PIL) test
results show that the second order single-input single-output (SISO) DSMC can
improve the tracking performances up to 90%, compared to a first order SISO
DSMC under sampling and quantization imprecisions, in the presence of modeling
uncertainties. Moreover, it is observed that by converting the engine SISO
controllers to a MIMO structure, the overall controller performance can be
enhanced by 25%, compared to the SISO second order DSMC, because of the
dynamics coupling consideration within the MIMO DSMC formulation.Comment: 12 pages, 7 figures, 1 tabl
MIMO First and Second Order Discrete Sliding Mode Controls of Uncertain Linear Systems under Implementation Imprecisions
The performance of a conventional model-based controller significantly
depends on the accuracy of the modeled dynamics. The model of a plant's
dynamics is subjected to errors in estimating the numerical values of the
physical parameters, and variations over operating environment conditions and
time. These errors and variations in the parameters of a model are the major
sources of uncertainty within the controller structure. Digital implementation
of controller software on an actual electronic control unit (ECU) introduces
another layer of uncertainty at the controller inputs/outputs. The
implementation uncertainties are mostly due to data sampling and quantization
via the analog-to-digital conversion (ADC) unit. The failure to address the
model and ADC uncertainties during the early stages of a controller design
cycle results in a costly and time consuming verification and validation (V&V)
process. In this paper, new formulations of the first and second order discrete
sliding mode controllers (DSMC) are presented for a general class of uncertain
linear systems. The knowledge of the ADC imprecisions is incorporated into the
proposed DSMCs via an online ADC uncertainty prediction mechanism to improve
the controller robustness characteristics. Moreover, the DSMCs are equipped
with adaptation laws to remove two different types of modeling uncertainties
(multiplicative and additive) from the parameters of the linear system model.
The proposed adaptive DSMCs are evaluated on a DC motor speed control problem
in real-time using a processor-in-the-loop (PIL) setup with an actual ECU. The
results show that the proposed SISO and MIMO second order DSMCs improve the
conventional SISO first order DSMC tracking performance by 69% and 84%,
respectively. Moreover, the proposed adaptation mechanism is able to remove the
uncertainties in the model by up to 90%.Comment: 10 pages, 11 figures, ASME 2017 Dynamic Systems and Control
Conferenc
On a Topic Model for Sentences
Probabilistic topic models are generative models that describe the content of
documents by discovering the latent topics underlying them. However, the
structure of the textual input, and for instance the grouping of words in
coherent text spans such as sentences, contains much information which is
generally lost with these models. In this paper, we propose sentenceLDA, an
extension of LDA whose goal is to overcome this limitation by incorporating the
structure of the text in the generative and inference processes. We illustrate
the advantages of sentenceLDA by comparing it with LDA using both intrinsic
(perplexity) and extrinsic (text classification) evaluation tasks on different
text collections
- …