The performance of a conventional model-based controller significantly
depends on the accuracy of the modeled dynamics. The model of a plant's
dynamics is subjected to errors in estimating the numerical values of the
physical parameters, and variations over operating environment conditions and
time. These errors and variations in the parameters of a model are the major
sources of uncertainty within the controller structure. Digital implementation
of controller software on an actual electronic control unit (ECU) introduces
another layer of uncertainty at the controller inputs/outputs. The
implementation uncertainties are mostly due to data sampling and quantization
via the analog-to-digital conversion (ADC) unit. The failure to address the
model and ADC uncertainties during the early stages of a controller design
cycle results in a costly and time consuming verification and validation (V&V)
process. In this paper, new formulations of the first and second order discrete
sliding mode controllers (DSMC) are presented for a general class of uncertain
linear systems. The knowledge of the ADC imprecisions is incorporated into the
proposed DSMCs via an online ADC uncertainty prediction mechanism to improve
the controller robustness characteristics. Moreover, the DSMCs are equipped
with adaptation laws to remove two different types of modeling uncertainties
(multiplicative and additive) from the parameters of the linear system model.
The proposed adaptive DSMCs are evaluated on a DC motor speed control problem
in real-time using a processor-in-the-loop (PIL) setup with an actual ECU. The
results show that the proposed SISO and MIMO second order DSMCs improve the
conventional SISO first order DSMC tracking performance by 69% and 84%,
respectively. Moreover, the proposed adaptation mechanism is able to remove the
uncertainties in the model by up to 90%.Comment: 10 pages, 11 figures, ASME 2017 Dynamic Systems and Control
Conferenc